Minimum Spanning Tree Algorithms

Input: Connected, undirected graph G with edge weights (unconstrained, but must be additive)

Output: A graph G' with the following properties:
- G' is a spanning graph of G
- G' is a tree (connected, acyclic)
- G' has a minimal total weight among all spanning trees
Kruskal’s Algorithm

(A, D)
(E, H)
(F, G)
(A, B)
(B, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)
Kruskal’s Algorithm

(A, D)
(E, H)
(F, G)
(A, B)
(B, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)
Kruskal’s Algorithm

1. KruskalMST(G):
 2. DisjointSets forest
 3. foreach (Vertex v : G):
 4. forest.makeSet(v)
 5. PriorityQueue Q // min edge weight
 6. foreach (Edge e : G):
 7. Q.insert(e)
 8. Graph T = (V, {})
 9. while |T.edges()| < n-1:
 10. Vertex (u, v) = Q.removeMin()
 11. if forest.find(u) != forest.find(v):
 12. T.addEdge(u, v)
 13. forest.union(forest.find(u),
 forest.find(v))
 14. return T

Diagram:

- Edges: (A, D), (E, H), (F, G), (A, B), (B, D), (G, E), (G, H), (E, C), (C, H), (E, F), (F, C), (D, E), (B, C), (C, D), (A, F), (D, F)
- Vertices: A, B, C, D, E, F, G, H
- Edges with weights: 2, 5, 16, 10, 11, 12, 4, 8, 9, 17, 13, 15, 1
- MST:
 - Edges: (A, B), (A, D), (B, D), (G, E), (G, H), (E, C), (E, F), (F, C), (D, E), (B, C), (C, D), (A, F), (D, F)
Kruskal’s Algorithm

```
KruskalMST(G):
    DisjointSets forest
    foreach (Vertex v : G):
        forest.makeSet(v)

    PriorityQueue Q    // min edge weight
    foreach (Edge e : G):
        Q.insert(e)

    Graph T = (V, {})

    while |T.edges()| < n-1:
        Vertex (u, v) = Q.removeMin()
        if forest.find(u) != forest.find(v):
            T.addEdge(u, v)
            forest.union(forest.find(u), forest.find(v))

    return T
```
Kruskal’s Algorithm

<table>
<thead>
<tr>
<th>Priority Queue:</th>
<th>Total Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td></td>
</tr>
<tr>
<td>Sorted Array</td>
<td></td>
</tr>
</tbody>
</table>

```
KruskalMST(G):
    DisjointSets forest
    foreach (Vertex v : G):
        forest.makeSet(v)

    PriorityQueue Q    // min edge weight
    foreach (Edge e : G):
        Q.insert(e)

    Graph T = (V, {})

    while |T.edges()| < n-1:
        Vertex (u, v) = Q.removeMin()
        if forest.find(u) != forest.find(v):
            T.addEdge(u, v)
            forest.union( forest.find(u),
                          forest.find(v) )

    return T
```
Partition Property

Consider an arbitrary partition of the vertices on G into two subsets U and V.
Partition Property

Consider an arbitrary partition of the vertices on G into two subsets U and V.

Let e be an edge of minimum weight across the partition.

Then e is part of some minimum spanning tree.
Partition Property

The partition property suggests an algorithm:
Prim’s Algorithm

```
PrimMST(G, s):
    Input: G, Graph;
    s, vertex in G, starting vertex
    Output: T, a minimum spanning tree (MST) of G

    foreach (Vertex v : G):
        d[v] = +inf
        p[v] = NULL
        d[s] = 0

    PriorityQueue Q   // min distance, defined by d[v]
    Q.buildHeap(G.vertices())

    Graph T           // "labeled set"

    repeat n times:
        Vertex m = Q.removeMin()
        T.add(m)
        foreach (Vertex v : neighbors of m not in T):
            if cost(v, m) < d[v]:
                d[v] = cost(v, m)
                p[v] = m

    return T
```
Prim’s Algorithm

```java
6  PrimMST(G, s):
7      foreach (Vertex v : G):
8          d[v] = +inf
9          p[v] = NULL
10         d[s] = 0
11
12         PriorityQueue Q // min distance, defined by d[v]
13         Q.buildHeap(G.vertices())
14         Graph T         // "labeled set"
15
16         repeat n times:
17             Vertex m = Q.removeMin()
18             T.add(m)
19             foreach (Vertex v : neighbors of m not in T):
20                 if cost(v, m) < d[v]:
21                     d[v] = cost(v, m)
22                     p[v] = m
```

<table>
<thead>
<tr>
<th>Adj. Matrix</th>
<th>Adj. List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td></td>
</tr>
<tr>
<td>Unsorted Array</td>
<td></td>
</tr>
</tbody>
</table>
Prim’s Algorithm

Sparse Graph:

Dense Graph:

```java
// PrimMST(G, s):
foreach (Vertex v : G):
    d[v] = +inf
    p[v] = NULL
    d[s] = 0
PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap(G.vertices())
Graph T // "labeled set"
repeat n times:
    Vertex m = Q.removeMin()
    T.add(m)
    foreach (Vertex v : neighbors of m not in T):
        if cost(v, m) < d[v]:
            d[v] = cost(v, m)
            p[v] = m
```

<table>
<thead>
<tr>
<th></th>
<th>Adj. Matrix</th>
<th>Adj. List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td>O(n^2 + m lg(n))</td>
<td>O(n lg(n) + m lg(n))</td>
</tr>
<tr>
<td>Unsorted Array</td>
<td>O(n^2)</td>
<td>O(n^2)</td>
</tr>
</tbody>
</table>
MST Algorithm Runtime:

- Kruskal’s Algorithm: $O(n + m \lg(n))$
- Prim’s Algorithm: $O(n \lg(n) + m \lg(n))$

- What must be true about the connectivity of a graph when running an MST algorithm?

- How does n and m relate?
MST Algorithm Runtime:

- Kruskal’s Algorithm:
 \(O(n + m \lg(n)) \)

- Prim’s Algorithm:
 \(O(n \lg(n) + m \lg(n)) \)