Disjoint Sets Analysis

The **iterated log** function:

The number of times you can take a log of a number.

\[
\log^*(n) =
\begin{cases}
0 & , n \leq 1 \\
1 + \log^*(\log(n)) & , n > 1
\end{cases}
\]

What is \(\log^*(2^{65536})\)?
Disjoint Sets Analysis

In an Disjoint Sets implemented with smart **unions** and path compression on **find**:

Any sequence of **m union** and **find** operations result in the worse case running time of $O(\ _\)$, where n is the number of items in the Disjoint Sets.
In Review: Data Structures

Array
- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
- Hashing
- Heaps
 - Priority Queues
- UpTrees
 - Disjoint Sets

Linked
- Doubly Linked List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree
In Review: Data Structures

Array
- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
- Hashing
- Heaps
 - Priority Queues
- UpTrees
 - Disjoint Sets

Linked
- Doubly Linked List
- Skip List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

Graphs
Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms
Graph Vocabulary

\[G = (V, E) \]

- \(|V| = n \)
- \(|E| = m \)

Incident Edges:

\[I(v) = \{ \{x, v\} \in E \} \]

Degree:

\[\text{Degree}(v) = |I| \]

Adjacent Vertices:

\[A(v) = \{ x : \{x, v\} \in E \} \]

Path:

\(\text{Path}(G_2) \): Sequence of vertices connected by edges

Cycle:

\(\text{Cycle}(G_1) \): Path with a common begin and end vertex with at least 3 vertices.

Simple Graph:

\(\text{Simple Graph}(G) \): A graph with no self loops or multi-edges.
Graph Vocabulary

\[G = (V, E) \]
\[|V| = n \]
\[|E| = m \]

Subgraph(G):
\[G' = (V', E') \]
\[V' \subseteq V, E' \subseteq E, \text{ and } (u, v) \in E' \implies u \in V', v \in V' \]

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)
Running times are often reported by \(n \), the number of vertices, but often depend on \(m \), the number of edges.

How many edges? **Minimum edges:**

- Not Connected:

- Connected*:

Maximum edges:

- Simple:

- Not simple:

\[
\sum_{v \in V} \deg(v) =
\]
Graph ADT

Data:
- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:
- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);
Graph Implementation Idea

\[u - a - v ~ c ~ b ~ w ~ d ~ z \]
Graph Implementation: Edge List

Vertex Collection:

Edge Collection:
Graph Implementation: Edge List

insertVertex(K key):

removeVertex(Vertex v):

\[
\begin{array}{c}
\text{u} \\
\text{v} \\
\text{w} \\
\text{z}
\end{array}
\quad
\begin{array}{ccc}
\text{u} & \text{v} & \text{a} \\
\text{v} & \text{w} & \text{b} \\
\text{u} & \text{w} & \text{c} \\
\text{w} & \text{z} & \text{d}
\end{array}
\]
Graph Implementation: Edge List

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

G.incidentEdges(v1).contains(v2)
Graph Implementation: Edge List

```
insertEdge(Vertex v1, Vertex v2, K key):
```

![Graph Diagram]
Graph Implementation: Adjacency Matrix

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>w</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>b</td>
<td></td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>c</td>
<td></td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>z</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>