CS 225

Data Structures

March 28 – Graphs G Carl Evans

Disjoint Sets Analysis

```
The iterated log function:
The number of times you can take a log of a number.
```

```
log^{*}(n) = 0, n \le 1
1 + log^{*}(log(n)), n > 1
```

```
What is lg*(2<sup>65536</sup>)?
```

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart **unions** and path compression on **find**:

Any sequence of **m union** and **find** operations result in the worse case running time of O(______), where **n** is the number of items in the Disjoint Sets.

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

Linked

- Doubly Linked List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

- Doubly Linked List

Graphs

- Skip List
- Trees

Linked

- BTree
- Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

Graphs

To study all of these structures:

- 1. A common vocabulary
- 2. Graph implementations
- 3. Graph traversals
- 4. Graph algorithms

TROILUS AND CRESSIDA

Graph Vocabulary

Degree(v): ||

Adjacent Vertices: A(v) = { x : {x, v} in E }

Path(G₂): Sequence of vertices connected by edges

Cycle(G₁): Path with a common begin and end vertex with at least 3 vertices.

Simple Graph(G): A graph with no self loops or multi-edges.

Graph Vocabulary

Subgraph(G): G' = (V', E'): $V' \in V, E' \in E, and$ $(u, v) \in E' \rightarrow u \in V', v \in V'$

Complete subgraph(G) Connected subgraph(G) Connected component(G) Acyclic subgraph(G) Spanning tree(G) Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

How many edges? **Minimum edges:** Not Connected:

Connected*:

Maximum edges: Simple:

Not simple:

deg(v

Graph ADT

Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);

Graph Implementation Idea

Vertex Collection:

Edge Collection:

insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

G.incidentEdges(v1).contains(v2)

insertEdge(Vertex v1, Vertex v2, K key):

Graph Implementation: Adjacency Matrix

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

	u	V	W	z
u				
v				
w				
Z				