November 1 – Disjoint Sets
G Carl Evans
Running Times

<table>
<thead>
<tr>
<th></th>
<th>Hash Table</th>
<th>AVL</th>
<th>Linked List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find</td>
<td>SUHA:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Worst Case:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td>SUHA:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Worst Case:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
std data structures

std::map
 ::operator[]
 ::insert
 ::erase

 ::lower_bound(key) ➔ Iterator to first element ≤ key
 ::upper_bound(key) ➔ Iterator to first element > key
std data structures

std::unordered_map
 ::operator[]
 ::insert
 ::erase

 ::lower_bound(key) \rightarrow \text{Iterator to first element } \leq \text{key}
 ::upper_bound(key) \rightarrow \text{Iterator to first element } > \text{key}
std data structures

std::unordered_map
- ::operator[]
- ::insert
- ::erase

- ::lower_bound(key) → Iterator to first element ≤ key
- ::upper_bound(key) → Iterator to first element > key

- ::load_factor()
- ::max_load_factor(ml) → Sets the max load factor
Disjoint Sets

Key Ideas:
• Each element exists in exactly one set.
• Every set is an equitant representation.
 • Mathematically: $4 \in [0]_R \rightarrow 8 \in [0]_R$
 • Programmatically: find(4) == find(8)
Disjoint Sets ADT

• Maintain a collection $S = \{s_0, s_1, \ldots, s_k\}$

• Each set has a representative member.

• API: $\texttt{void makeSet(const T & t)}$;
 $\texttt{void union(const T & k1, const T & k2)}$;
 $\texttt{T & find(const T & k)}$;
Implementation #1

Find(k):

Union(k1, k2):
YOU EXPECTED A NEW DATA STRUCTURE

BUT IT WAS ME, TREE ALL ALONG
Implementation #2

• We will continue to use an array where the index is the key

• The value of the array is:
 • -1, if we have found the representative element
 • The index of the parent, if we haven’t found the rep. element

• We will call these UpTrees:

```
0  1  2  3
0 -1 -1 -1
-1 -1 -1 -1
```
UpTrees
Disjoint Sets

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Disjoint Sets Find

```cpp
int DisjointSets::find() {
    if ( s[i] < 0 ) { return i; }
    else { return _find( s[i] ); }
}
```

Running time?

What is the ideal UpTree?
Disjoint Sets Union

```
1
2
3
4
void DisjointSets::union(int r1, int r2) {
}
```
Disjoint Sets – Union

0 1 2 3 4 5 6 7 8 9 10 11
6 6 6 8 -1 10 7 -1 7 7 4 5
Disjoint Sets – Smart Union

Idea: Keep the height of the tree as small as possible.

<table>
<thead>
<tr>
<th>Union by height</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Disjoint Sets – Smart Union

Idea: Keep the height of the tree as small as possible.

Idea: Minimize the number of nodes that increase in height

Both guarantee the height of the tree is: ______________.
Disjoint Sets Find

```cpp
int DisjointSets::find(int i) {
    if ( s[i] < 0 ) { return i; }
    else { return _find( s[i] ); }
}
```

```cpp
void DisjointSets::unionBySize(int root1, int root2) {
    int newSize = arr_[root1] + arr_[root2];

    // If arr_[root1] is less than (more negative), it is the larger set;
    // we union the smaller set, root2, with root1.
    if ( arr_[root1] < arr_[root2] ) {
        arr_[root2] = root1;
        arr_[root1] = newSize;
    }

    // Otherwise, do the opposite:
    else {
        arr_[root1] = root2;
        arr_[root2] = newSize;
    }
}
```
Path Compression
Disjoint Sets Analysis

The **iterated log** function:

The number of times you can take a log of a number.

\[
\log^*(n) = \\
0 \quad , \quad n \leq 1 \\
1 + \log^*(\log(n)) \quad , \quad n > 1
\]

What is \(\log^*(2^{65536}) \)?
Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and path compression on find:

Any sequence of \textbf{m union} and \textbf{find} operations result in the worse case running time of \(O(\ _\)\), where \(n\) is the number of items in the Disjoint Sets.