Final Project/Final Exam
template <typename K, typename V>
void AVL<K, D>::_insert(const K & key, const V & data, TreeNode *& cur) {
 if (cur == NULL) { cur = new TreeNode(key, data); }
 else if (key < cur->key) { _insert(key, data, cur->left); }
 else if (key > cur->key) { _insert(key, data, cur->right);}
 _ensureBalance(cur);
}
template <typename K, typename V>
void AVL<K, D>::_ensureBalance(TreeNode * & cur) {
 // Calculate the balance factor:
 int balance = height(cur->right) - height(cur->left);

 // Check if the node is current not in balance:
 if (balance == -2) {
 int l_balance =
 height(cur->left->right) - height(cur->left->left);
 if (l_balance == -1) {
 __________________________;
 } else {
 __________________________;
 }
 } else if (balance == 2) {
 int r_balance =
 height(cur->right->right) - height(cur->right->left);
 if (r_balance == 1) {
 __________________________;
 } else {
 __________________________;
 }
 }

 _updateHeight(cur);
};
AVL Tree Analysis

We know: insert, remove and find runs in: ___________.

We will argue that: h is ___________.
AVL Tree Analysis

Definition of big-O:

...or, with pictures:

\[n, \text{number of nodes} \]

\[h, \text{height} \]
AVL Tree Analysis

• The height of the tree, $f(n)$, will always be less than $c \times g(n)$ for all values where $n > k$.
AVL Tree Analysis

h, height

n, number of nodes

n, number of nodes

h, height
AVL Tree Analysis

- The number of nodes in the tree, $f^{-1}(h)$, will always be greater than $c \times g^{-1}(h)$ for all values where $n > k$.

\[f^{-1}(h) > c \times g^{-1}(h) \]
Plan of Action

Since our goal is to find the lower bound on n given h, we can begin by defining a function given h which describes the smallest number of nodes in an AVL tree of height h:
Simplify the Recurrence

\[N(h) = 1 + N(h - 1) + N(h - 2) \]
State a Theorem

Theorem: An AVL tree of height h has at least ________.

Proof:
I. Consider an AVL tree and let h denote its height.
II. Case: _______________

An AVL tree of height ____ has at least ____ nodes.
Prove a Theorem

III. Case: ______________

An AVL tree of height _____ has at least _____ nodes.
Prove a Theorem

By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height _____ has at least _____ nodes.
Prove a Theorem

V. Using a proof by induction, we have shown that:

...and inverting:
Summary of Balanced BST

Red-Black Trees
- Max height: $2 \times \lg(n)$
- Constant number of rotations on insert, remove, and find

AVL Trees
- Max height: $1.44 \times \lg(n)$
- Rotations:
Summary of Balanced BST

Pros:

- Running Time:
 - Improvement Over:

- Great for specific applications:
Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:
Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:

```cpp
std::map<K, V> map;
```
Red-Black Trees in C++

\[V & \, \text{std::map}<K, \, V>::\text{operator[]}\left(\, \text{const} \, K & \right) \]
Red-Black Trees in C++

\[
V & \& \text{std::map}<K, V>::\text{operator[]}(\text{const } K &)
\]

\[
\text{std::map}<K, V>::\text{erase}(\text{const } K &)
\]
Red-Black Trees in C++

```cpp
iterator std::map<K, V>::lower_bound( const K & );
iterator std::map<K, V>::upper_bound( const K & );
```
Every Data Structure So Far

<table>
<thead>
<tr>
<th></th>
<th>Unsorted Array</th>
<th>Sorted Array</th>
<th>Unsorted List</th>
<th>Sorted List</th>
<th>Binary Tree</th>
<th>BST</th>
<th>AVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traverse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>