CS, 2, \#31: MSTs: Kruskal + Prim's Algorithm

April 6, $2022 \cdot$ G Carl Evans

Minimum Spanning Tree

"The Muddy City" by CS Unplugged, Creative Commons BY-NC-SA 4.0

A Spanning Tree on a connected graph \mathbf{G} is a subgraph, \mathbf{G}^{\prime}, such that:

1. Every vertex is G is in G' and
2. G^{\prime} is connected with the minimum number of edges

This construction will always create a new graph that is a \qquad (connected, acyclic graph) that spans G.

A Minimum Spanning Tree is a spanning tree with the minimal total edge weights among all spanning trees.

- Every edge must have a weight
- The weights are unconstrained, except they must be additive (eg: can be negative, can be non-integers)
- Output of a MST algorithm produces G':
- G' is a spanning graph of G
- G^{\prime} is a tree

G' has a minimal total weight among all spanning trees. There may be multiple minimum spanning trees, but they will have the same total weight.

> Pseudocode for Kruskal's MST Algorithm
KruskalMST (G) :
DisjointSets forest
foreach (Vertex v : G):
forest.makeSet(v)
PriorityQueue Q // min edge weight
foreach (Edge e: G):
Q.insert(e)
Graph $T=(V,\{ \})$
while |T.edges()| < n-1:
Vertex (u, v) = Q.removeMin()
if forest.find(u) $==$ forest.find(v):
T.addEdge (u, v)
forest.union(forest.find(u),
forest. find (u),
forest.find (v))
return T

Kruskal's Algorithm

Kruskal's Running Time Analysis

We have multiple choices on which underlying data structure to use to build the Priority Queue used in Kruskal's Algorithm:

Priority Queue Implementations:	Heap	Sorted Array
Building $: 6-8$		
Each removeMin $: 13$		

Based on our algorithm choice:

Priority Queue Implementation:	Total Running Time
Heap	
Sorted Array	

Reflections

Why would we prefer a Heap?

Why would be prefer a Sorted Array?

Partition Property

Consider an arbitrary partition of the vertices on \mathbf{G} into two subsets \mathbf{U} and \mathbf{V}.

Let \mathbf{e} be an edge of minimum weight across the partition.

Then \mathbf{e} is part of some minimum spanning tree.

Proof in CS 374!

Partition Property Algorithm

Prim's Minimum Spanning Tree Algorithm

CS 225 - Things To Be Doing:

1. mp_mazes due Monday!
2. If your final project has not been approved get it revised.
3. Daily POTDs are ongoing for +1 point /problem but pausing over break
4. No lecture Friday
