#30: BFS/DFS
April 4, 2022 · G Carl Evans

Graph Traversal

Objective: Visit every vertex and every edge in the graph.

Purpose: Search for interesting sub-structures in the graph.

We've seen traversal before – this is different:

<table>
<thead>
<tr>
<th>BST</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BFS Graph Traversal:

Pseudocode for BFS

```java
BFS(G):
    Input: Graph, G
    Output: A labeling of the edges on G as discovery and cross edges
    foreach (Vertex v : G.vertices()):
        setLabel(v, UNEXPLORED)
    foreach (Edge e : G.edges()):
        setLabel(e, UNEXPLORED)
    foreach (Vertex v : G.vertices()):
        if getLabel(v) == UNEXPLORED:
            BFS(G, v)
    BFS(G, v):
        Queue q
        setLabel(v, VISITED)
        q.enqueue(v)
        while !q.empty():
            v = q.dequeue()
            foreach (Vertex w : G.adjacent(v)):
                if getLabel(w) == UNEXPLORED:
                    setLabel(v, w, DISCOVERY)
                    setLabel(w, VISITED)
                    q.enqueue(w)
                elseif getLabel(v, w) == UNEXPLORED:
                    setLabel(v, w, CROSS)
```

BFS Graph Observations

1. Does our implementation handle disjoint graphs? How?
 - a. How can we modify our code to count components?

2. Can our implementation detect a cycle? How?
 - a. How can we modify our code to store update a private member variable `cycleDetected_`?

3. What is the running time of our algorithm?

4. What is the shortest path between A and H?
5. What is the shortest path between E and H?
 a. What does that tell us about BFS?

6. What does a cross edge tell us about its endpoints?

7. What structure is made from discovery edges in G?

Big Ideas: Utility of a BFS Traversal

Obs. 1: BFS can be used to count components.

Obs. 2: BFS can be used to detect cycles.

Obs. 3: In BFS, d provides the shortest distance to every vertex.

Obs. 4: In BFS, the endpoints of a cross edge never differ in distance, d, by more than 1: |d(u) - d(v)| = 1

DFS Graph Traversal

Two types of edges:

1.

2.

Modifying BFS to create DFS

```python
BFS(G):
    Input: Graph, G
    Output: A labeling of the edges on G as discovery and cross edges
def BFS(G):
    foreach (Vertex v : G.vertices()):
        setLabel(v, UNEXPLORED)
    foreach (Edge e : G.edges()):
        setLabel(e, UNEXPLORED)
    foreach (Vertex v : G.vertices()):
        if getLabel(v) == UNEXPLORED:
            BFS(G, v)

BFS(G, v):
    Queue q
    setLabel(v, VISITED)
    q.enqueue(v)
    while !q.empty():
        v = q.dequeue()
        foreach (Vertex w : G.adjacent(v)):
            if getLabel(w) == UNEXPLORED:
                setLabel(v, w, DISCOVERY)
                setLabel(w, VISITED)
                q.enqueue(w)
            elseif getLabel(v, w) == UNEXPLORED:
                setLabel(v, w, CROSS)
```

Minimum Spanning Tree

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

CS 225 – Things To Be Doing:

1. Working on Final Project
2. mp_mazes EC due today.
3. POTD ongoing