

#20: AVL Analysis
March 4, 2022 · G Carl Evans

Plan of Action:
Goal: Find a function that defines the lower bound on n given h.

Given the goal, we begin by defining a function that describes the
smallest number of nodes in an AVL of height h:

Theorem:
An AVL tree of height h has at least _____________________.

I. Consider an AVL tree and let h denote its height.

II. Case: ________________

III. Case: _________________

Inductive hypothesis (IH):

Proving our IH:

V. Using a proof by induction, we have shown that:

...and by inverting our finding:

Summary of Balanced BSTs:

Advantages Disadvantages

Using a Red-Black Tree in C++
C++ provides us a balanced BST as part of the standard library:
 std::map<K, V> map;

The map implements a dictionary ADT. Primary means of access is
through the overloaded operator[]:
 V & std::map<K, V>::operator[](const K &)
 This function can be used for both insert and find!

Removing an element:
 void std::map<K, V>::erase(const K &);

Range-based searching:
 iterator std::map<K, V>::lower_bound(const K &);
 iterator std::map<K, V>::upper_bound(const K &);

Running Time of Every Data Structure So Far:

 Unsorted
Array

Sorted
Array

Unsorted
List

Sorted
List

Find

Insert

Remove

Traverse

 Binary Tree BST AVL
Find

Insert

Remove

Traverse

Range-based Searches:
Q: Consider points in 1D: p = {p1, p2, …, pn}.
 …what points fall in [11, 42]?

Tree Construction:

Range-based Searches:

Running Time:

BTree Motivation
Big-O assumes uniform time for all operations, but this isn’t always
true.

However, seeking data from the cloud may take 100ms+.
 …an O(lg(n)) AVL tree no longer looks great:

BTree Motivations
Knowing that we have long seek times for data, we want to build a
data structure with two (related) properties:

1.

2.

CS 225 – Things To Be Doing:
1. mp_mosaics due Monday!
2. lab_trees due Sunday!
3. Find a team if you are going to do the Final Project
4. Daily POTDs are ongoing!

