Trees!

“The most important non-linear data structure in computer science.”
- David Knuth, The Art of Programming, Vol. 1

We will primarily talk about **binary trees**:
- How many parents does each vertex have?
- Which vertex has the fewest **children**?
- Which vertex has the most **ancestors**?
- Which vertex has the most **descendants**?
- List all the vertices is b’s left **subtree**.
- List all the **leaves** in the tree.

Definition: Binary Tree

A binary tree T is:

The height of a tree T is:

Tree Property: Full
Tree Property: Perfect

Tree Property: Complete

Towards a Tree Implementation – Tree ADT:

<table>
<thead>
<tr>
<th>ADT Functionality (English Description)</th>
<th>Function Call</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tree Class

```
#pragma once

template <typename T>
class BinaryTree {
public:
    /* ... */
private:
};
```

Trees are nothing new – they’re fancy linked lists:

Theorem: If there are n data items in our representation of a binary tree, then there are ___________ NULL pointers.

CS 225 – Things To Be Doing:

1. exam1 starts tomorrow in CBTF
2. mp_list extra credit part1 due Today
3. Daily POTDs