

#6: C++ Overloading and Inheritance
January 31, 2022 · G Carl Evans

Overloading Operators
C++ allows custom behaviors to be defined on over 20 operators:

Arithmetic + - * / % ++ --
Bitwise & | ^ ~ << >>
Assignment =
Comparison == != > < >= <=
Logical ! && ||
Other [] () ->

General Syntax:
Adding overloaded operators to Cube:

Cube.h Cube.cpp
1
2
3
4
…
10
11
12
13
14
…

#pragma once

class Cube {
 public:
 // ...

 // ...

…
40
41
42
43
44
45
46
47
48
…

/* ... */

/* ... */

One Very Powerful Operator: Assignment Operator

Cube.h
 Cube & operator=(const Cube & other);

Cube.cpp
 Cube & Cube::operator=(const Cube & other) { ... }

Functionality Table:

 Copies an object Destroys an
object

Copy constructor

Copy Assignment
operator

Destructor

The Rule of Three
If it is necessary to define any one of these three functions in a class, it
will be necessary to define all three of these functions:

1.

2.

3.

The Rule of Zero

CS 225 and Rule Three/Five/Zero
In CS 225 We will:

Inheritance
In nearly all object-oriented languages (including C++), classes can be
extended to build other classes. We call the class being extended the
base class and the class inheriting the functionality the derived
class.

Shape.h Square.h
 class Shape {
 public:
 Shape();
 Shape(double length);
 double getLength() const;

 private:
 double length_;
};

 #include "Shape.h"

class Square : public Shape
{
 public:
 double getArea() const;

 private:
 // Nothing!
};

In the code, Square is derived from the base class Shape:

• All public functionality of Shape is part of Square:

main.cpp
5
6
7
8
…

int main() {
 Square sq;
 sq.getLength(); // Returns 1, the len init’d
 // by Shape’s default ctor
 ...

• [Private Members of Shape]:

Virtual

• The virtual keyword allows us to override the behavior of a
class by its derived type.

Example:
Cube.cpp RbikCube.cpp

 Cube::print_1() {
 cout << "Cube" << endl;
}

Cube::print_2() {
 cout << "Cube" << endl;
}

virtual Cube::print_3() {
 cout << "Cube" << endl;
}

virtual Cube::print_4() {
 cout << "Cube" << endl;
}

// In .h file:
virtual print_5() = 0;

 // No print_1()

RubikCube::print_2() {
 cout << "Rubik" << endl;
}

// No print_3()

RubikCube::print_4() {
 cout << "Rubik" << endl;
}

RubikCube::print_5() {
 cout << "Rubik" << endl;
}

 Cube c; RubikCube c;
RubikCube rc;
Cube &c = rc;

c.print_1();

c.print_2();

c.print_3();

c.print_4();

c.print_5();

Polymorphism
Object-Orientated Programming (OOP) concept that a single object
may take on the type of any of its base types.

• A RubikCube may polymorph itself to a Cube
• A Cube cannot polymorph to be a RubikCube (base types

only)

Why Polymorphism? Suppose you’re managing an animal
shelter that adopts cats and dogs:

Option 1 – No Inheritance

animalShelter.cpp
1
2
3

Cat & AnimalShelter::adopt() { ... }
Dog & AnimalShelter::adopt() { ... }
...

Option 2 – Inheritance

animalShelter.cpp
1 Animal & AnimalShelter::adopt() { ... }

Pure Virtual Methods
In Cube, print_5() is a pure virtual method:

Cube.h
1 virtual Cube::print_5() = 0;

A pure virtual method does not have a definition and makes the class
and abstract class.

CS 225 – Things To Be Doing:
1. mp_stickers due next Monday
2. lab_intro extended deadline Sunday
3. new lab released this week also due Sunday
4. Daily POTDs

