# String Algorithms and Data Structures Burrows-Wheeler Transform

CS 199-225 Brad Solomon March 21, 2022



Department of Computer Science

# A\_stree reflection



Learning Objectives met



Lecture Helpfulness



Dynamic iterator was well-liked

# A\_sarray due today!

Remember to return all matching strings!

# Exact pattern matching w/ indexing

There are many data structures built on *suffixes* 

Before break we looked at these



# Exact pattern matching w/ indexing

|                                      | Suffix tree | Suffix array |
|--------------------------------------|-------------|--------------|
| Time: Does P occur?                  |             |              |
| Time: Report <i>k</i> locations of P |             |              |
| Space                                |             |              |

m = |T|, n = |P|, k = # occurrences of P in T

# Suffix tree vs suffix array: size

The suffix array has a smaller constant factor than the tree



Suffix tree: ~16 bytes per character

Suffix array: ~4 bytes per character

Raw text: 2 bits per character

# Exact pattern matching w/ indexing

There are many data structures built on *suffixes* 

The FM index is a compressed self-index (smaller\* than original text)!



# Exact pattern matching w/ indexing

The basis of the FM index is a transformation





**Reversible permutation** of the characters of a string



1) How to encode?

2) How to decode?

3) How is it useful for search?



#### Text rotations

A string is a 'rotation' of another string if it can be reached by wrap-around shifting the characters

```
abcdef$
 bcdef$a
   cdef$ab
    def$abc
      ef$abcd
        f $ a b c d e
         $abcdef
            (after this they
              repeat)
```

#### **Text Rotations**

A string is a 'rotation' of another string if it can be reached by wrap-around shifting the characters

Which of these are rotations of 'ABCD'?

A) BCDA

B) BACD

C) DCAB

D) CDAB







- (1) Build all rotations
- (2) Sort all rotations
- (3) Take last column

$$T = c a r $$$

- (1) Build all rotations
- (2) Sort all rotations
- (3) Take last column



# Assignment 8: a\_bwt

Learning Objective:

Implement the Burrows-Wheeler Transform on text

Reverse the Burrows-Wheeler Transform to reproduce text

**Consider:** How can the BWT be stored *smaller* than the original text?

How to reverse the BWT?



$$BWT(T) = r c $a T = c a r $$$

$$BWT(T) = r c $ a$$
  $T = c a r $$ 

- 1) Prepend the BWT as a column 2) Sort the full matrix as rows
- 3) Repeat 1 and 2 until full matrix 4) Pick the row ending in '\$'



$$BWT(T) = r c $a T = c a r $$$

$$BWT(T) = r c $a T = c a r $$$

| \$ | C | a  | r  |  | \$ | C  |
|----|---|----|----|--|----|----|
| a  | r | \$ | C  |  | a  | r  |
| C  | a | r  | \$ |  | C  | a  |
| r  | Ś | C  | а  |  | r  | \$ |



$$BWT(T) = r c $ a$$
  $T = c a r $$ 

\$car

ar \$c

c a r \$

r \$ c a

\$ c a

a r \$

c a r

r \$ c

What is the right context of a p p I e \$? I e \$ a p

A letter always has the same right context.

```
$ a p p I e a p p I e $ e $ a p p I I I e $ a p p I I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p I I e $ a p p P I e $ a p p P I e $ a p p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $ a p P I e $
```

# Burrows-Wheeler Transform: T-ranking

To continue, we have to be able to uniquely identify each character in our text.

Give each character in *T* a rank, equal to # times the character occurred previously in *T*. Call this the *T-ranking*.

a b a a b a \$

Ranks aren't explicitly stored; they are just for illustration

BWM with T-ranking:

```
$ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub>
a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub> b
a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub> $ a<sub>0</sub> b
a<sub>2</sub> b a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub>
a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub> $
b a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub>
b a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub>
b a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub>
b a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub> $ a<sub>0</sub>
```

Look at first and last columns, called F and L (and look at just the **a**s)

**a**s occur in the same order in F and L. As we look down columns, in both cases we see:  $\mathbf{a_3}$ ,  $\mathbf{a_1}$ ,  $\mathbf{a_2}$ ,  $\mathbf{a_0}$ 

BWM with T-ranking:

```
      F
      L

      $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub>

      a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub> b

      a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub> $ a<sub>0</sub> b

      a<sub>2</sub> b a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub>

      a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub> $ a<sub>0</sub>

      b a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub>

      b a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub> $ a<sub>0</sub>
```

Same with **b**s: **b**<sub>1</sub>, **b**<sub>0</sub>

BWM with T-ranking:

```
$ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub>
a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub> b
a<sub>1</sub> a<sub>2</sub> b a<sub>0</sub> $ a<sub>0</sub> b
a<sub>2</sub> b a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub>
a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub> $
b a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub>
b a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub>
b a<sub>3</sub> $ a<sub>0</sub> b a<sub>1</sub> a<sub>2</sub>
b a<sub>1</sub> a<sub>2</sub> b a<sub>3</sub> $ a<sub>0</sub>
```

LF Mapping: The  $i^{th}$  occurrence of a character c in L and the  $i^{th}$  occurrence of c in F correspond to the same occurrence in T (i.e. have same rank)

This works because all our strings are rotations!

Why does this work?

```
Right context:

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

b a $ a b a $

b a $ a b a $

b a $ a b a $

b a $ a b a $

b a $ a b a $

b a $ a b a $

b a $ a b a $

context:

a b a $ a b

b a $ a b a $

context:

a b a $ a b

b a $ a b a $

context:

a b a $ a b

b a $ a b a $

context:

a b a $ a b

b a $ a b a $

context:

a b a $ a b

a b a $ a b

b a $ a b a $

b a $ a b a $

context:

a b a $ a b

a b a $ a b

b a $ a b a $

b a $ a b a $

context:

a b a $ a b

a b a $ a b

b a $ a b a $

b a $ a b

a b a $ a b

b a a b a $ a b

b a a b a $ a b

b a a b a $ a b

b a a b a $ a b

b a a b a $ a b

b a a b a $ a b

b a a b a $ a b

b a a b a $ a b

context:

a b a $ a b

a b a $ a b

a b a $ a b

b a a b a $ a b

b a a b a $ a b

b a a b a $ a b

b a a b a $ a b

b a a b a $ a b

context:

a b a $ a b

a b a $ a b

b a a b a $ a b

b a a b a $ a b

context:

a b a $ a b

a b a $ a b

context:

a b a $ a b

a b a $ a b

context:

a b a $ a b

a b a $ a b

context:

a b a $ a b

a b a $ a b

context:

a b a $ a b

a b a $ a b

context:

a b a $ a b

a b a $ a b

context:

a b a $ a b

a b a $ a b

context:

a b a
```

These characters have the same right contexts!

These characters are the same character!

$$a_0 b_0 a_1 a_2 b_1 a_3 $$$

Why does this work?

Why are these **a**s in this order relative to each other?





Occurrences of c in F are sorted by right-context. Same for L!

**Any ranking** we give to characters in T will match in F and L

LF Mapping can be used to recover our original text too!

Given BWT =  $a_3 b_1 b_0 a_1 $ a_2 a_0$ 

What is L?

What is F?

LF Mapping can be used to recover our original text too!

Start in first row. F must have \$.

L contains character just prior to \$: a<sub>3</sub>

Jump to row beginning with **a**<sub>0</sub>.

L contains character just prior to **a**<sub>0</sub>: **b**<sub>0</sub>.

Repeat for **b**<sub>0</sub>, get **a**<sub>2</sub>

Repeat for a<sub>2</sub>, get a<sub>1</sub>

Repeat for a<sub>1</sub>, get b<sub>1</sub>

Repeat for **b**<sub>1</sub>, get **a**<sub>3</sub>

Repeat for **a**<sub>3</sub>, get \$ (done)

**a**<sub>3</sub>  $b_1$ **a**<sub>3</sub> bo **a**<sub>1</sub> **a**<sub>2</sub> **a**<sub>1</sub>  $a_0$ b<sub>1</sub> **a**<sub>2</sub> bo **a**<sub>0</sub>



Another way to visualize:

$$T: a_0 b_0 a_1 a_2 b_1 a_3$$
\$

# Assignment 8: a\_bwt

Learning Objective:

Implement the Burrows-Wheeler Transform on text

Reverse the Burrows-Wheeler Transform to reproduce text

**Consider:** You can use either LF mapping or prepend-sort to reverse. Which do you think would be easier to implement (or more efficient)?

# Burrows-Wheeler Transform: A better ranking

**Any ranking** we give to characters in T will match in F and L

| T-Rank: Ord           | F-Ranl         |                |
|-----------------------|----------------|----------------|
| F                     | L              | F              |
| \$                    | a <sub>3</sub> | \$             |
| <b>a</b> <sub>3</sub> | b <sub>1</sub> | a <sub>o</sub> |
| <b>a</b> <sub>1</sub> | $b_0$          | a <sub>1</sub> |
| a <sub>2</sub>        | a <sub>1</sub> | a <sub>2</sub> |
| a <sub>0</sub>        | \$             | a <sub>3</sub> |
| <b>b</b> <sub>1</sub> | a <sub>2</sub> | b <sub>1</sub> |
| $b_0$                 | $a_0$          | b <sub>o</sub> |
|                       |                |                |

| F-Rank: O             | rder by F             |
|-----------------------|-----------------------|
| F                     | L                     |
| \$                    | $a_0$                 |
| a <sub>0</sub>        | $b_0$                 |
| a <sub>1</sub>        | b <sub>1</sub>        |
| a <sub>2</sub>        | a <sub>1</sub>        |
| <b>a</b> <sub>3</sub> | \$                    |
| $b_1$                 | a <sub>2</sub>        |
| $b_0$                 | <b>a</b> <sub>3</sub> |

*F*-rank is easy to store!

# Burrows-Wheeler Transform: A better ranking

T = a b b c c d \$

What is the BWM index for my first instance of C? ( $C_0$ ) [0-base for answer]



#### Burrows-Wheeler Transform: A better ranking

Say *T* has 300 **A**s, 400 **C**s, 250 **G**s and 700 **T**s and \$ < **A** < **C** < **G** < **T** 

What is the BWM index for my 100th instance of G? (G99) [0-base for answer]

Skip row starting with \$ (1 row)

Skip rows starting with **A** (300 rows)

Skip rows starting with **C** (400 rows)

Skip first 99 rows starting with **G** (99 rows)

Answer: skip 800 rows -> index 800 contains my 100th G

With a little preprocessing we can skip 701 rows!

#### FM Index

#### (Next week's material)

An index combining the BWT with a few small auxiliary data structures

Core of index is *first (F)* and *last (L) rows* from BWM:

**L** is the same size as T

**F** can be represented as array of  $|\Sigma|$  integers (or not stored at all!)

We're discarding *T* — we can recover it from *L*!



Can we query like the suffix array?

```
$abaaba
a$aba$ab
aba$aba
aba$aba
ba$abaa
baaba$a
```

```
6 $ a $ 2 a a b a $ 3 a b a $ 4 b a $ 1 b a a b a $
```

We don't have these columns, and we don't have T. Binary search not possible.

The BWM is a lot like the suffix array — maybe we can query the same way?

```
$ a b a a b a a b a a b a a b a $ a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a b a a a b a a b a a a b a a b a a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b
```

BWM(T)

```
5
a
a
a
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
a
b
a
a
b
a
a
b
a
a
b
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a<
```

SA(T)

The BWM is a lot like the suffix array — maybe we can query the same way?





We don't have these columns, and we don't have T.

Look for range of rows of BWM(T) with P as prefix

Start with shortest suffix, then match successively longer suffixes



We have rows beginning with **a**, now we want rows beginning with **ba** 



**Note:** We still aren't storing the characters in grey, we just know they exist.

We have rows beginning with **ba**, now we seek rows beginning with **aba** 



Now we have the rows with prefix **aba** 

When *P* does not occur in *T*, we eventually fail to find next character in *L*:

**Problem 1:** If we *scan* characters in the last column, that can be slow, O(m)

```
    F
    $ a b a a b a<sub>0</sub>
    a<sub>0</sub> $ a b a a b a b a<sub>1</sub>
    a<sub>1</sub> a b a $ a b a<sub>1</sub>
    a<sub>2</sub> b a $ a b a<sub>1</sub>
    b a $ a b a a<sub>2</sub>
    b a $ a b a $ a<sub>3</sub>

Scan, looking for bs

    b a $ a b a a<sub>2</sub>
    b a a b a $ a<sub>3</sub>
```



**Problem 2:** We don't immediately know where the matches are in T...

P =aba Got the same range, [3, 5), we would have got from suffix array





### **Bonus Slides**

Reversible permutation of the characters of a string



- 1) How to encode?
- 2) How to decode?
- 3) How is it useful for compression?
- 4) How is it useful for search?

```
Tomorrow_and_tomorrow_and_tomorrow
```

```
w$wwdd__nnoooaattTmmmrrrrrrooo__ooo
```

```
It_was_the_best_of_times_it_was_the_worst_of_times$
```

```
s$esttssfftteww_hhmmbootttt_ii__woeeaaressIi____
```

"bzip": compression w/ a BWT to better organize text

orrow\_and\_tomorrow\_and\_tomorrow\$tom
ow\$tomorrow\_and\_tomorrow\_and\_tomorr
ow\_and\_tomorrow\_and\_tomorrow\$tomorr
ow\_and\_tomorrow\_and\_tomorrow\$tomorr
row\$tomorrow\_and\_tomorrow\_and\_tomor
row\_and\_tomorrow\$tomorrow\_and\_tomor
row\_and\_tomorrow\_and\_tomorrow\$tomor
row\$tomorrow\_and\_tomorrow\$tomor

Ordered by the *context* to the *right* of each character

In English (and most languages), the next character in a word is not independent of the previous.

In general, if text structured BWT(T) more compressible

| final        |                                             |
|--------------|---------------------------------------------|
| char         | sorted rotations                            |
| ( <i>L</i> ) |                                             |
| a            | n to decompress. It achieves compression    |
| 0            | n to perform only comparisons to a depth    |
| 0            | n transformation} This section describes    |
| 0            | n transformation} We use the example and    |
| 0            | n treats the right-hand side as the most    |
| a            | n tree for each 16 kbyte input block, enc   |
| a            | n tree in the output stream, then encodes   |
| i            | n turn, set \$L[i]\$ to be the              |
| i            | n turn, set \$R[i]\$ to the                 |
| 0            | n unusual data. Like the algorithm of Man   |
| a            | n use a single set of probabilities table   |
| е            | n using the positions of the suffixes in    |
| i            | n value at a given point in the vector \$R  |
| е            | n we present modifications that improve t   |
| е            | n when the block size is quite large. Ho    |
| i            | n which codes that have not been seen in    |
| i            | n with \$ch\$ appear in the {\em same order |
| i            | n with \$ch\$. In our exam                  |
| 0            | n with Huffman or arithmetic coding. Bri    |
| 0            | n with figures given by Bell~\cite{bell}.   |

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the sorted list of rotations of a version of this paper are shown, together with the final character of each rotation.

Lets compare the SA with the BWT...

T = a b a a b a \$



Suffix Array is O(m)

Lets compare the SA with the BWT...



The BWT has a better constant factor!

BWM is related to the suffix array

```
$ a b a a b a a b a $ 5 a $ 5 a $ a a b a $ a b a $ a b a $ a b a $ 5 a b a $ a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a $ 5 a b a a b a
```

Same order whether rows are rotations or suffixes

In fact, this gives us a new definition / way to construct BWT(T):

$$BWT[i] = \begin{cases} T[SA[i] - 1] & \text{if } SA[i] > 0\\ \$ & \text{if } SA[i] = 0 \end{cases}$$

"BWT = characters just to the left of the suffixes in the suffix array"

BWM(T)

6 \$ a \$ a b a \$ 2 a a b a \$ a b a \$ a b a \$ 0 a b a a b a \$ c b



In fact, this gives us a new definition / way to construct BWT(T):

$$BWT[i] = \begin{cases} T[SA[i] - 1] & \text{if } SA[i] > 0\\ \$ & \text{if } SA[i] = 0 \end{cases}$$

"BWT = characters just to the left of the suffixes in the suffix array"

