String Algorithms and Data Structures

Burrows-Wheeler Transform

CS 199-225 March 21, 2022
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

A stree reflection

Time Lecture Helpfulness

Learning Objectives met

Dynamic iterator was well-liked

A_sarray due today!

Remember to return all matching strings!

Exact pattern matching w/ indexing

There are many data structures built on suffixes

Before break we looked at these

AN

h

R

M#
A
5 e
&

o)
6

v Suffix Trie
®

* O O-s o

: ll\h{:::::' $
[s] [4] .
s

NA$

k Suffix Tree

(S} S-S Nl IE) JUSE RO Ne)

C)
AS

ANAS
ANANAS
BANANAS
NAS

NANAS

Suffix Array

SBANANA
ASBANAN
ANASBAN
ANANASB
BANANAS
NASBANA
NANASBA

FM Index

Exact pattern matching w/ indexing

Suffix tree Suffix array

Time: Does P occur?

Time: Report k
locations of P

Space

m=|T|, n=|P|, k=#occurrencesof Pin T

Suffix tree vs suffix array: size

The suffix array has a smaller constant factor than the tree

BT Suffix tree: ~16 bytes per character
: - &
2 o &
2 g Suffix array: ~4 bytes per character
- ffix a2 :

o > Raw text: 2 bits per character

I I I I I
0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

Exact pattern matching w/ indexing
There are many data structures built on suffixes

The FM index is a compressed self-index (smaller* than original text)!

RN m 5] ¢ GBANAN“
5{ ¢ T 1 5| as ASBANAN
She ;{: E:}i 3] anas ANASBAN
; t%) ip $ NA/:—’/$ NA$ 1| ANANAS ANANASB
Js o | [5] ' [2] 0| BANANA$ BANANAS
g ®4 CP s /\ Nas 4] Nas NASBANA
S5 o6 O 2] NANAs NANASEA
ES Suffix Trie Suffix Tree Suffix Array kFM Indey

Reduced size

Exact pattern matching w/ indexing

The basis of the FM index is a transformation

BANANAS

\

ANNBSAA

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

T BWT(T)
BANANAS € ANNBSAA

1) How to encode?
2) How to decode?

3) How is it useful for search?

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

abaabas$?27?
T

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Text rotations

A string is a‘rotation’ of another string if it can be reached by
wrap-around shifting the characters

abcdefs$

bcde f$a

cdefSab

def Sabc
efSabcd

fSabcde
Sabcdef

(after this they
repeat)

Text Rotations

A string is a‘rotation’ of another string if it can be reached by
wrap-around shifting the characters

Which of these are rotations of ABCD’?

A) BCDA B) BACD

C) DCAB D) CDAB

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

abaabas$

baaba$a
abaabas aabaS$ab

T abaSaba
baSabaa

aSabaab
Sabaaba

(after this they
repeat)

Ay
7. o
Q[‘/O
s

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

ab

Sa

as$

abaabas$ ba
T ab
aa

b a

Ay
7. o
<9[‘/O
s

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

Sabaaba
aSabaab
aabaS$Sab
abaabas$ agaSEbg
4 abaaba

! /’%b. ba$abaa
s VbaabaSa

Sort Burrows-Wheeler
Matrix

abbas$aa
BWT(T)

Last
column

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

(1) Build all rotations
(2) Sort all rotations
(3) Take last column

T=cars

Burrows-Wheeler Transform

(1) Build all rotations
(2) Sort all rotations
(3) Take last column

T=cars$ a r 3 c rc$a

Last
vyr $ c a column

Assignment 8: a_bwt

Learning Objective:
Implement the Burrows-Wheeler Transform on text

Reverse the Burrows-Wheeler Transform to reproduce text

Consider: How can the BWT be stored smaller than the original text?

Burrows-Wheeler Transform

How to reverse the BWT?

v
abaabas$
T

-
—’-—
"
-
-
-
”
-

A4y
AQ»@
o
Ns

aSabaab
aabaSab
abaSaba
abaaba$
baSabaa
Ybaaba$a

Sort Burrows-Wheeler
Matrix

-
-
-

-
-~
s

Y
Y
~

Last
column

Burrows-Wheeler Transform

BWT(T)=r ¢ S a T=cars}

Burrows-Wheeler Transform

BWT(T)=r c $ a T=cars$
1) Prepend the BWT as a column 2) Sort the full matrix as rows

3) Repeat 1 and 2 until full matrix 4) Pick the row ending in‘$’

S $ ¢ $ ¢ a $ ¢ a
a ar ar S ar §
C cC a cC a r cC a ¥r

Burrows-Wheeler Transform

BWT(T)=r ¢ S a T=cars}

Burrows-Wheeler Transform

BWT(T)=r c $ a T=cars

Burrows-Wheeler Transform

BWT(T)=r ¢ S a T=cars}

Burrows-Wheeler Transform

What is the right contextof a plp/l e $? leSap

A letter always has the same right context.

© 0 = 0 9 W»n
C = 0O N0V 9
-0 N o T O
T N o C —T
o 0T M —
09 C TC =— 1N 0

Burrows-Wheeler Transform: T-ranking

To continue, we have to be able to uniquely identify each character
In our text.

Give each character in T a rank, equal to # times the character
occurred previously in T. Call this the T-ranking.

abaabays$

Ranks aren’t explicitly stored; they are just for illustration

Burrows-Wheeler Transform

F L
BWM with T-ranking: as
as
ai
az ai

do
da>
do

Look at first and last columns, called Fand L (and look at just the as)

as occur in the same order in Fand L. As we look down columns,
in both cases we see: as, a1, az, ao

Burrows-Wheeler Transform

F
BWM with T-ranking:

(o gl o p

Same with bs: b1, bo

(e gl o p

Burrows-Wheeler Transform: LF Mapping

F L
BWM with T-ranking: $ as
as b
a b
a2 ai
ao S
b az
b do

LF Mapping: The ith occurrence of a character cin L and the jth occurrence
of cin F correspond to the same occurrence in T (i.e. have same rank)

This works because all our strings are rotations!

Burrows-Wheeler Transform: LF Mapping

Why does this work?

Sabaaba
aSabaab
Right context: alaba s a 5 |
aba $ ab 3 3 3 a Right context:
abaabas abasab
baSabaa
baaba$a

These characters have the same right contexts!

These characters are the same character! aoboai ax b asz $

Burrows-Wheeler Transform: LF Mapping

Why does this work?

_Sabaaba3 $abaaba3,\
Why are these as in as| 9 E b g a E‘ as 9 ; b g a :g‘ Why are these as in
this order relative to alada>aio aabda>abo ihisorder relative to
each other? azbasab a a2bas abla /each other?
' laglbaaba$ aobaabaS/ '
ba$Sabaa; b:a$abajla:
boaaba$ a boaaba$|ao
They're sorted by They're sorted by
right-context right-context

Occurrences of ciin F are sorted by right-context. Same for L!

Any ranking we give to characters in T will matchin Fand L

Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!
GivenBWT= as biboai $§ az ao

What is L?

What is F?

Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!

Start in first row. F must have S. F
L contains character just priorto $: as S
as
Jump to row beginning with ao. a
L contains character just prior to ao: bo. as
Repeat for bo, get a: ao
Repeat for az, get a: b;
Repeat for as, get by bo
Repeat for by, get as
Repeat for az, get $ (done)

Burrows-Wheeler Transform: LF Mapping

Another way to visualize:

F L F L F L F L F L F L F L
—> $—as
az—>b
a1—>bo
d2—>ai
ao->$
bi—az

bo—>ao

T: aoboaj az bias S

Assignment 8: a_bwt

Learning Objective:
Implement the Burrows-Wheeler Transform on text

Reverse the Burrows-Wheeler Transform to reproduce text

Consider: You can use either LF mapping or prepend-sort to reverse.
Which do you think would be easier to implement (or more efficient)?

Burrows-Wheeler Transform: A better ranking

Any ranking we give to characters in T will matchin Fand L

T-Rank: Order by T G—Rank: Order byh F-rank is easy to store!

F L F L

S as S ao
as b1 do bo
ai bo a1 b
d>2 di d2 ai
ao S as S

b a: b a:
bo do bo as

Burrows-Wheeler Transform: A better ranking
T=a b b c cd3$

What is the BWM index for my first instance of C? (Co) [0-base for answer]

Q A" n T YD N ™M
A AT T WO —

Burrows-Wheeler Transform: A better ranking

Say T has 300 As, 400 Cs, 250 Gsand 700 Tsand $ <A< C<G<T
What is the BWM index for my 100th instance of G? (Ggo) [0-base for answer]

0 row starting with $ (1 row)

Kip rows starting with A (300 rows)

Kip rows starting with C (400 rows)

Kip first 99 rows starting with G (99 rows)

K

Ln N 1 N

Answer: skip 800 rows -> index 800 contains my 100th G

With a little preprocessing we can skip 701 rows!

FM Index

(Next week’s material)
An index combining the BWT with a few small auxiliary data structures

Core of index is first (F) and last (L) rows from BWM:

L isthe samesizeas T

F can be represented as array of |2| integers (or
not stored at all!)

ST 999N
0O 0N T O ™

We're discarding T— we can recover it from L!

FM Index: Querying

Can we query like the suffix array?

S a 6|$

a b 5/la$

a b 2laabas$

a a 3labas$

a S Olabaabas$
b a 4/bas$

b. a 1/lbaaba$

We don’t have these columns, and we don’t haveT.
Binary search not possible.

FM Index: Querying

The BWM is a lot like the suffix array — maybe we can query the same way?

Sabaaba 6|S
aSabaab 5/a$
aabaSab 2laabas$
abaSaba 3labas$
abaabas$ Olabaaba$
baSabaa 4 ba$
baabas$a 1/baaba$

BWM(T) SA(T)

FM Index: Querying

The BWM is a lot like the suffix array — maybe we can query the same way?

S a 6|$

a b 5/a$

a b 2laabas$

a a 3laba$

a S Olabaaba$
b 2 41ba$

b a 1 baabas$
S

\

We don’t have these columns, and we don’t haveT.

FM Index: Querying

Look for range of rows of BWM(T) with P as prefix

Start with shortest suffix, then match successively longer suffixes

P=aba

F L

S ao

do b
Easy to find all the rows | |a1 b
beginning with a a2 ai

IRCE S
b a:
b as

FM Index: Querying

We have rows beginning with a, now we want rows beginning with ba

p=aba p=aba

F L F

$ ao S ao
do b ao b
a1 b <« Look at those rows in L. ai b
az ai bo, b1 are bs occuring just to left. a> ai
as S 1 as S
b a> Use LF Mapping. Let new b a>
b as range delimitthosebs b as

Note: We still aren't storing the characters in grey, we just know they exist.

FM Index: Querying

We have rows beginning with ba, now we seek rows beginning with aba

p=aba p=aba

F L F

$ ao S ao
ao b 20 b
a b ai b
=) ai ' a, a:
as $ Use LF Mapping :I: as $
b a2 :|:<— a2, a3 occur just to left. b a2
b as] b as

Now we have the rows with prefix aba

FM Index: Querying

When P does not occur in T, we eventually fail to find next character in L:

P=bba
F L
S ao
ao b
ai b
a> ai

as
Rows with ba prefix I E a2 }— No bs!

FM Index: Querying

Problem 1: If we scan characters in the last column, that can be slow, O(m)

p=aba

F L

S ao

do b

a b Scan, looking for bs
az ai

as S v

b a

b as

FM Index: Querying @

Problem 2: We don't immediately know where the matches areinT...

Got the same range, [3, 5), we would

p=aba have got from suffix array
F L
S do 6|9$
ao b 5/a$
ai b 2laabas$
a2 a1 3|a ba$
[3’5)\33 S 3,5) 0Ola balaba$
/ b a> 4bas$
Where are b as 1lbaaba$

the values?

Bonus Slides

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

T BWT(T)
BANANAS € ANNBSAA

1) How to encode?
2) How to decode?
3) How is it useful for compression?

4) How is it useful for search?

Burrows-Wheeler Transform

Tomorrow_and tomorrow_and_tomorrow
w$wwdd nnoooaattTmmmrrrrrrooo 000

It was_the best of times it was the worst of times$

s$esttssfftteww hhmmbootttt ii woeeaaressIi

“bzip”: compression w/ a BWT to better organize text

Burrows-Wheeler Transform

orrow_and tomorrow and tomorrow$tom
ow$tomorrow and tomorrow_and tomorr
ow_and_tomorrow$tomorrow and tomorr
ow_and tomorrow and tomorrow$tomorr
row$tomorrow and tomorrow and tomor
row_and_tomorrow$tomorrow and_ tomor
row_and_tomorrow and tomorrow$tomor
rrow$tomorrow _and tomorrow and tomo

Ordered by the context to the right of each character

Burrows-Wheeler Transform

final
sorted rotations

[¢]
=
B

~
=

to decompress. It achieves compression
to perform only comparisons to a depth

transformation} This section describes
transformation} We use the example and
treats the right-hand side as the most

tree for each 16 kbyte input block, enc
tree in the output stream, then encodes
turn, set $L[i]$ to be the

turn, set $R[1]$ to the

unusual data. Like the algorithm of Man
use a single set of probabilities table
using the positions of the suffixes in

value at a given point in the vector $R
we present modifications that improve t
when the block size is quite large. Ho
which codes that have not been seen in

with ch appear in the {\em same order
with chs. In our exam
with Huffman or arithmetic coding. Bri
with figures given by Bell \cite{bell}.

In English (and most languages),
the next character in a word is
not independent of the previous.

In general, if text structured
BWT(T) more compressible

O O F-H- H- O ® F- ® ® O H-H O ® O O 0 O ®
S BB B3B8 BBBB8B88B3B8B88888

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital
Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

Lets compare the SA with the BWT...

T=abaabas$

= | [OWIN [T Oy

SA(T)

Suffix Array is O(m)

Sabaaba
aSabaab
aabas$Sab
abaSaba
abaabas
baSabaa
baaba$a

BWM(T)

Burrows-Wheeler Transform

Lets compare the SA with the BWT...

T=abaabas$

6
5
2
3
0
4
1
SA(T) BWT(T)
Suffix Array is O(m) BWT is O(m)

The BWT has a better constant factor!

OO WnVNoY TTT 9D

Burrows-Wheeler Transform

BWM is related to the suffix array

Sabaaba 69S
aSabaab 5/a$
aabas$Sab 2laabas$
abaSaba 3labas$
abaaba$ Olabaabas$
baSabaa 41bas$
baaba$a llbaabas$
BWM(T) SA(T)

Same order whether rows are rotations or suffixes

Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

T[SA[i] — 1] if SA[] >0

BWTT = { $ if SA[i] =0

“BWT = characters just to the left of the suffixes in the suffix array”

6|9$

5/la $

2laabas$
abaabas$ 3labas$

Olabaaba$

41bas$

l/'baabas$

.

SA(T) BWM(T)

Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

T[SA[i] — 1] if SA[] >0

BWTli] = { $ if SA[i] =0

“BWT = characters just to the left of the suffixes in the suffix array”

6|$S a T[5]
5/la $ b T[4]
2laabas b T[1]
abaabas$ 3labas$ a T[2]
Olabaaba$ S SA[O]
4 bas a T[3]
l1lbaabas$ a T[O]
T SA(T) BWM(T)

O(|T]) O(|T])

