A_stree reflection

Time

Learning Objectives met

Lecture Helpfulness

Dynamic iterator was well-liked
A_sarray due today!

Remember to return all matching strings!
Exact pattern matching \textit{w/ indexing}

There are many data structures built on \textit{suffixes}

Before break we looked at these

- Suffix Trie
- Suffix Tree
- Suffix Array
- FM Index
Exact pattern matching w/ indexing

<table>
<thead>
<tr>
<th></th>
<th>Suffix tree</th>
<th>Suffix array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time: Does P occur?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time: Report k locations of P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$m = |T|$, $n = |P|$, $k = \#$ occurrences of P in T
Suffix tree vs suffix array: size

The suffix array has a smaller constant factor than the tree

- Suffix tree: ~16 bytes per character
- Suffix array: ~4 bytes per character
- Raw text: 2 bits per character
Exact pattern matching *w*/* indexing

There are many data structures built on **suffixes**

The FM index is a compressed self-index (smaller* than original text)!
Exact pattern matching \textit{w/ indexing}

The basis of the FM index is a \textit{transformation}

\begin{align*}
 \text{B A N A N A } & \text{ $} \\
 \downarrow \\
 \text{A N N B } & \text{ $ A A }
\end{align*}
Burrows-Wheeler Transform

Reversible permutation of the characters of a string

<table>
<thead>
<tr>
<th>T</th>
<th>B W T(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B A N A N A $</td>
<td>A N N B $ A A</td>
</tr>
</tbody>
</table>

1) How to encode?

2) How to decode?

3) How is it useful for search?
Burrows-Wheeler Transform

Reversible permutation of the characters of a string

$abaabab$ T $???$

All rotations

Text rotations

A string is a ‘rotation’ of another string if it can be reached by wrap-around shifting the characters

![Diagram showing text rotations](image-url)

(after this they repeat)
Text Rotations

A string is a ‘rotation’ of another string if it can be reached by wrap-around shifting the characters

Which of these are rotations of ‘ABCD’?

A) BCDA
B) BACD
C) DCAB
D) CDAB
Burrows-Wheeler Transform

Reversible permutation of the characters of a string

(after this they repeat)

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

\[\text{a b a a b a $} \]

\[
\begin{align*}
\text{a b a a b a $} & \\
\text{$ a b a a b a} & \\
\text{a $ a b a a b} & \\
\text{b a $ a b a a} & \\
\text{a b a $ a b a} & \\
\text{a a b a $ a b} & \\
\text{b a a b a $ a} & \\
\end{align*}
\]

All rotations

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

$$a \ b \ a \ a \ b \ a \ a \ b$$

T

All rotations

Sort

Burrows-Wheeler Matrix

$\begin{align*}
& a \ b \ a \ a \ b \\
& a \ a \ b \ a \ a \ b \\
& a \ b \ a \ a \ b \ a \ b \\
& a \ b \ a \ a \ b \ a \ b \\
& b \ a \ a \ b \ a \ a \ b \\
& b \ a \ a \ b \ a \ a \ b \\
& b \ a \ a \ b \ a \ a \ b
\end{align*}$

BWT(T)

Last column

Burrows-Wheeler Transform

(1) Build all rotations
(2) Sort all rotations
(3) Take last column

\[T = \text{c a r } \$ \]
Burrows-Wheeler Transform

(1) Build all rotations
(2) Sort all rotations
(3) Take last column

$T = \text{c a r }$ \rightarrow $\text{$c a r$}$ \rightarrow r c a
Assignment 8: a_bwt

Learning Objective:

Implement the Burrows-Wheeler Transform on text

Reverse the Burrows-Wheeler Transform to reproduce text

Consider: How can the BWT be stored smaller than the original text?
Burrows-Wheeler Transform

How to reverse the BWT?

All rotations

Sort

Burrows-Wheeler Matrix

$ a \ b \ a \ a \ b \ a \ a \ b
\ a \ a \ b \ a \ a \ b
\ a \ a \ b \ a \ a \ b
\ a \ b \ a \ a \ b \ a
\ a \ b \ a \ a \ b \ a
\ b \ a \ a \ b \ a \ a
\ b \ a \ a \ b \ a \ a $

BWT(T)

Last column
Burrows-Wheeler Transform

\[\text{BWT}(T) = r \ c \ $ \ a \quad T = c \ a \ r \ $ \]
Burrows-Wheeler Transform

BWT(T) = r c $ a \quad T = c a r$

1) Prepend the BWT as a column
2) Sort the full matrix as rows
3) Repeat 1 and 2 until full matrix
4) Pick the row ending in ‘$’
Burrows-Wheeler Transform

\[\text{BWT}(T) = r \ c \ \$ \ a \quad T = c \ a \ r \ \$ \]
Burrows-Wheeler Transform

\[\text{BWT}(T) = r \ c \ $ \ a \ \ \ \ \ T = c \ a \ r \ $ \]

$ \ c \ a \ r \ $ \ c $

a \ r \ $ \ c \ a \ r \ $ \ c \ a $

r \ $ \ c \ a \ r \ $ \ r \ $
Burrows-Wheeler Transform

\[BWT(T) = r\ c\ \$\ a \quad T = c\ a\ r\ \$ \]

\[
\begin{array}{cccc}
\$, & c & a & r \\
a & r & \$ & c \\
c & a & r & \$
\end{array}
\quad
\begin{array}{cccc}
\$, & c & a \\
a & r & \$ \\
c & a & r \\
r & \$ & c
\end{array}
\]
Burrows-Wheeler Transform

What is the right context of apple? le$ap

A letter always has the same right context.

$apple
apple$
el$apple
le$ap
ple$ap
ple$ap
ple$ap
Burrows-Wheeler Transform: T-ranking

To continue, we have to be able to uniquely identify each character in our text.

Give each character in T a rank, equal to the number of times the character occurred previously in T. Call this the T-ranking.

\[a \ b \ a \ a \ b \ a \ S \]

Ranks aren’t explicitly stored; they are just for illustration.
Burrows-Wheeler Transform

BWM with T-ranking:

\[
\begin{array}{cccc}
F & & & \\
\$ & a_0 & b & a_1 & a_2 & b & a_3 \\
a_3 & $ & a_0 & b & a_1 & a_2 & b \\
a_1 & a_2 & b & a_3 & $ & a_0 & b \\
a_2 & b & a_3 & $ & a_0 & b & a_1 \\
a_0 & b & a_1 & a_2 & b & a_3 & $ \\
b & a_3 & $ & a_0 & b & a_1 & a_2 \\
b & a_1 & a_2 & b & a_3 & $ & a_0 \\
\end{array}
\]

Look at first and last columns, called \(F \) and \(L \) (and look at just the \(a \)s)

\(a \)s occur in the same order in \(F \) and \(L \). As we look down columns, in both cases we see: \(a_3, a_1, a_2, a_0 \)
Burrows-Wheeler Transform

BWM with T-ranking:

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$ a_0</td>
<td>b a_1</td>
</tr>
<tr>
<td>b</td>
<td>a_2</td>
<td>b a_3</td>
</tr>
<tr>
<td>$</td>
<td>a_3</td>
<td>$ a_0</td>
</tr>
<tr>
<td>a</td>
<td>a_0</td>
<td>b a_1</td>
</tr>
<tr>
<td>b</td>
<td>a_2</td>
<td>b a_3</td>
</tr>
<tr>
<td>a</td>
<td>a_0</td>
<td>b a_1</td>
</tr>
<tr>
<td>b</td>
<td>a_3</td>
<td>$ a_0</td>
</tr>
<tr>
<td>b</td>
<td>a_1</td>
<td>b a_3</td>
</tr>
<tr>
<td>a</td>
<td>$ a_0</td>
<td>b a_1</td>
</tr>
<tr>
<td>b</td>
<td>a_2</td>
<td>b a_3</td>
</tr>
</tbody>
</table>

Same with bs: b_1, b_0
Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking:

<table>
<thead>
<tr>
<th></th>
<th>$</th>
<th>a_0</th>
<th>b</th>
<th>a_1</th>
<th>a_2</th>
<th>b</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_3</td>
<td></td>
<td>$</td>
<td>a_0</td>
<td>b</td>
<td>a_1</td>
<td>a_2</td>
<td>b</td>
</tr>
<tr>
<td>a_1</td>
<td>a_2</td>
<td>b</td>
<td>a_0</td>
<td>$</td>
<td>a_0</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td>b</td>
<td>a_3</td>
<td>$</td>
<td>a_0</td>
<td>b</td>
<td>a_1</td>
<td></td>
</tr>
<tr>
<td>a_0</td>
<td>b</td>
<td>a_1</td>
<td>a_2</td>
<td>b</td>
<td>a_3</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a_3</td>
<td>$</td>
<td>a_0</td>
<td>b</td>
<td>a_1</td>
<td>a_2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a_1</td>
<td>a_2</td>
<td>b</td>
<td>a_3</td>
<td>$</td>
<td>a_0</td>
<td></td>
</tr>
</tbody>
</table>

LF Mapping: The i^{th} occurrence of a character c in L and the i^{th} occurrence of c in F correspond to the same occurrence in T (i.e. have same rank)

This works because all our strings are rotations!
Burrows-Wheeler Transform: LF Mapping

Why does this work?

These characters have the same right contexts!

These characters are the same character!
Burrows-Wheeler Transform: LF Mapping

Why does this work?

Why are these as in this order relative to each other?

Occurrences of c in F are sorted by right-context. Same for L!

Any ranking we give to characters in T will match in F and L
Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!

Given BWT = a₃ b₁ b₀ a₁ $ a₂ a₀

What is L?

What is F?
Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!

Start in first row. F must have $.$
L contains character just prior to $\$: a_3

Jump to row beginning with a_0.
L contains character just prior to a_0: b_0.

Repeat for b_0, get a_2
Repeat for a_2, get a_1
Repeat for a_1, get b_1
Repeat for b_1, get a_3
Repeat for a_3, get $\$ (done)
Burrows-Wheeler Transform: LF Mapping

Another way to visualize:

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>$</td>
</tr>
<tr>
<td>$</td>
</tr>
<tr>
<td>$</td>
</tr>
</tbody>
</table>

T: \[a_0 \ b_0 \ a_1 \ a_2 \ b_1 \ a_3 \ $]
Assignment 8: a_bwt

Learning Objective:

Implement the Burrows-Wheeler Transform on text

Reverse the Burrows-Wheeler Transform to reproduce text

Consider: You can use either LF mapping or prepend-sort to reverse. Which do you think would be easier to implement (or more efficient)?
Burrows-Wheeler Transform: A better ranking

Any ranking we give to characters in \(T \) will match in \(F \) and \(L \)

<table>
<thead>
<tr>
<th>T-Rank: Order by T</th>
<th>F-Rank: Order by F</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(L)</td>
</tr>
<tr>
<td>$</td>
<td>(a_3)</td>
</tr>
<tr>
<td>(a_3)</td>
<td>(b_1)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_0)</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(a_1)</td>
</tr>
<tr>
<td>(a_0)</td>
<td>($)</td>
</tr>
<tr>
<td>(b_1)</td>
<td>(a_2)</td>
</tr>
<tr>
<td>(b_0)</td>
<td>(a_0)</td>
</tr>
</tbody>
</table>

\(F \)-rank is easy to store!
Burrows-Wheeler Transform: A better ranking

$T = \ a \ b \ b \ c \ c \ d \ \$\$

What is the BWM index for my first instance of C? (C_0) [0-base for answer]

<table>
<thead>
<tr>
<th>F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>a b b c c d</td>
</tr>
<tr>
<td>a</td>
<td>b b c c d $</td>
</tr>
<tr>
<td>b</td>
<td>b c c d $ a</td>
</tr>
<tr>
<td>b</td>
<td>c c d $ a b</td>
</tr>
<tr>
<td>c</td>
<td>c d $ a b b</td>
</tr>
<tr>
<td>c</td>
<td>d $ a b b c</td>
</tr>
<tr>
<td>d</td>
<td>$ a b b c c</td>
</tr>
</tbody>
</table>
Burrows-Wheeler Transform: A better ranking

Say T has 300 As, 400 Cs, 250 Gs and 700 Ts and $\$ < A < C < G < T$

What is the BWM index for my 100th instance of G? (G^{99}) [0-base for answer]

- Skip row starting with $\$$(1 row)
- Skip rows starting with A (300 rows)
- Skip rows starting with C (400 rows)
- Skip first 99 rows starting with G (99 rows)

Answer: skip 800 rows -> **index 800 contains my 100th G**

With a little preprocessing we can skip 701 rows!
FM Index

An index combining the BWT with a few small auxiliary data structures

Core of index is **first (F)** and **last (L) rows** from BWM:

L is the same size as T

F can be represented as array of $|\Sigma|$ integers (or not stored at all!)

We’re discarding T — we can recover it from L!
FM Index: Querying

Can we query like the suffix array?

We don’t have these columns, and we don’t have T. Binary search not possible.
FM Index: Querying

The BWM is a lot like the suffix array — maybe we can query the same way?

$ a b a a b a$
$a \ a b a a b$
$a a b a \ a b$
$a b a \ a b a$
$a b a a b a$
$b a \ a b a a$
$b a a b a \ a$

BWM(T)

6 $
5 a $
2 a a b a $
3 a b a $
0 a b a a b a $
4 b a $
1 b a a b a $

SA(T)
FM Index: Querying

The BWM is a lot like the suffix array — maybe we can query the same way?

We don’t have these columns, and we don’t have T.
FM Index: Querying

Look for range of rows of BWM(T) with P as prefix

Start with shortest suffix, then match successively longer suffixes

$$P = aba$$

F L

$\$$ aba a b a a b a_0$

a_0 $\$$ a b a a b$

a_1 aba $\$$ a b$

a_2 ba $\$$ a b a a_1$

a_3 ba ba b a $\$$

b a $\$$ a b a a_2$

b a a b a $\$$ a_3$

Easy to find all the rows beginning with a
FM Index: Querying

We have rows beginning with a, now we want rows beginning with ba

\[P = aba \]

Note: We still aren’t storing the characters in grey, we just know they exist.
FM Index: Querying

We have rows beginning with \textbf{ba}, now we seek rows beginning with \textbf{aba}

\[P = \textbf{aba} \]

\[
\begin{array}{c|c}
F & L \\
\hline
$ & a b a a b a_0 \\
a_0 & $ a b a a b \\
a_1 & a b a $ a b \\
a_2 & b a $ a b a_1 \\
a_3 & b a a b a $ \\
\hline
b a & $ a b a a_2 \\
b & a a b a $ a_3 \\
\end{array}
\]

Use LF Mapping

\[a_2, a_3 \text{ occur just to left.} \]

\[P = \textbf{aba} \]

\[
\begin{array}{c|c}
F & L \\
\hline
$ & a b a a b a_0 \\
a_0 & $ a b a a b \\
a_1 & a b a $ a b \\
a_2 & b a $ a b a_1 \\
a_3 & b a a b a $ \\
\hline
b & a $ a b a_2 \\
b & a a b a $ a_3 \\
\end{array}
\]

Now we have the rows with prefix \textbf{aba}
FM Index: Querying

When \(P \) does not occur in \(T \), we eventually fail to find next character in \(L \):

\[
P = \text{bba}
\]

\[
\begin{array}{c|c}
F & L \\
\hline
\$ & a \ b \ a \ a \ b \ a_0 \\
a_0 & $ a \ b \ a \ a \ b \\
a_1 & a \ b \ a \ $ \ a \ b \\
a_2 & b \ a \ $ \ a \ b \ a_1 \\
a_3 & b \ a \ a \ b \ a \ $ \\
\end{array}
\]

Rows with \(\text{ba} \) prefix

\[
\text{b a $ a b a a}_2 \\
\text{b a a b a $ a}_3 \\
\]

← No bs!
Problem 1: If we scan characters in the last column, that can be slow, $O(m)$
FM Index: Querying

Problem 2: We don’t immediately know *where* the matches are in T...

\[P = \text{aba} \]

Got the same range, \([3, 5)\), we would have got from suffix array

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>L</td>
</tr>
<tr>
<td>$</td>
<td>a b a a b a_0</td>
</tr>
<tr>
<td>a_0</td>
<td>$ a b a a b</td>
</tr>
<tr>
<td>a_1</td>
<td>a b a a b</td>
</tr>
<tr>
<td>a_2</td>
<td>b a $ a b a_1</td>
</tr>
<tr>
<td>a_3</td>
<td>b a a b a</td>
</tr>
</tbody>
</table>

Where are the values?

Where are the values?

[3, 5)
Bonus Slides
Burrows-Wheeler Transform

Reversible permutation of the characters of a string

\[
\begin{align*}
T & \quad \text{BWT}(T) \\
B A N A N A $ & \quad \longleftrightarrow \quad A N N B $ A A
\end{align*}
\]

1) How to encode?

2) How to decode?

3) **How is it useful for compression?**

4) How is it useful for search?
Burrows-Wheeler Transform

Tomorrow_and_tomorrow_and_tomorrow

It was the best of times, it was the worst of times

“bzip”: compression w/ a BWT to better organize text
Burrows-Wheeler Transform

orrow_and_tomorrow_and_tomorrow$tom
ow$tomorrow_and_tomorrow_and_tomorr
ow_and_tomorrow$tomorrow_and_tomorr
ow_and_tomorrow_and_tomorrow$tomorr
ow$tomorrow_and_tomorrow_and_tomor
ow_and_tomorrow$tomorrow_and_tomor
ow_and_tomorrow_and_tomorrow$tomorr
row$tomorrow_and_tomorrow_and_tomor
ow_and_tomorrow$tomorrow_and_tomor
ow_and_tomorrow_and_tomorrow$tomorr
row$tomorrow_and_tomorrow_and_tomo

Ordered by the context to the right of each character
In English (and most languages),
the next character in a word is
not independent of the previous.

In general, if text structured
BWT(T) more compressible

![Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.](image)

Burrows-Wheeler Transform

Let's compare the SA with the BWT...

\[T = \text{a b a a b a $} \]

6	$ a b a a b a
5	a $ a b a a b
2	a a b a $ a b
3	a b a $ a b a
0	a b a a b a $
4	b a $ a b a a
1	b a a b a $ a

SA(T) BWM(T)

Suffix Array is O(m)
Burrows-Wheeler Transform

Let's compare the SA with the BWT...

\[T = a \ b \ a \ a \ b \ a \$ \]

\[
\begin{array}{cccccc}
6 & 5 & 2 & 3 & 0 & 4 \\
\end{array}
\]

\[
\begin{array}{cc}
\text{SA}(T) & \text{BWT}(T) \\
\end{array}
\]

Suffix Array is O(m) BWT is O(m)

The BWT has a better constant factor!
Burrows-Wheeler Transform

BWM is related to the suffix array

<table>
<thead>
<tr>
<th>BWM(T)</th>
<th>SA(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ a b a a b a$</td>
<td>6 $</td>
</tr>
<tr>
<td>a $ a b a a b</td>
<td>5 a $</td>
</tr>
<tr>
<td>a a b a $ a b</td>
<td>2 a a b a $</td>
</tr>
<tr>
<td>a b a $ a b a</td>
<td>3 a b a $</td>
</tr>
<tr>
<td>a b a a b a $</td>
<td>0 a b a a b a $</td>
</tr>
<tr>
<td>b a $ a b a a</td>
<td>4 b a $</td>
</tr>
<tr>
<td>b a a b a $ a</td>
<td>1 b a a b a $</td>
</tr>
</tbody>
</table>

Same order whether rows are rotations or suffixes
In fact, this gives us a new definition / way to construct BWT(T):

\[
BWT[i] = \begin{cases}
T[SA[i] - 1] & \text{if } SA[i] > 0 \\
\$ & \text{if } SA[i] = 0
\end{cases}
\]

“BWT = characters just to the left of the suffixes in the suffix array”
Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

\[
BWT[i] = \begin{cases}
 T[SA[i] - 1] & \text{if } SA[i] > 0 \\
 $ & \text{if } SA[i] = 0
\end{cases}
\]

“BWT = characters just to the left of the suffixes in the suffix array”