A_zval reflection

Time

Learning Objectives met

Lecture Helpfulness

What was bad about the assignment?
A_zalg due today!

Remember you can re-use code from a_zval

You should not use code from the internet!
Exact Pattern Matching w/ Z-algorithm

Pattern, P \hspace{1cm} Text, T

Naive $\approx \theta(|P| \cdot |T|)$ \hspace{1cm} Z-Algorithm $\approx \theta(|P| + |T|)$

Find instances of P in T

‘instances’: An exact, full length copy
Why continue?

The Z-algorithm is:

The Z-algorithm is: \(O(|P| + |T|) \) time

An alphabet-independent solution

The Z-algorithm is less good at:

Searching for a \textbf{set} of patterns (Aho-Corasick)

Running in \textit{sub-linear}* time (Boyer-Moore)

* — in practice, not theory
Exact pattern matching \(\textit{w/} \ \text{Boyer-Moore}\)

Boyer Moore \textbf{preprocesses} the pattern

\[P \rightarrow \text{Preprocess} \rightarrow T \rightarrow \text{Boyer-Moore} \approx O(|P| + |T|) \]

Find instances of \(P\) in \(T\)

‘instances’: An exact, full length copy

\[\approx O(|P|) \]
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{cat} \]

\[T: \text{carl carried the cat} \]

\[\text{cat} \]

\[\text{carl carried the cat} \]

\[0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ldots \]

What does this alignment tell us?
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{cat} \]

\[T: \text{carl carried the cat} \]

\[\text{car} \ldots \text{cat} \]

\[0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ \ldots \]

What does this alignment tell us?

1) Our pattern doesn’t match at this alignment

There is no ‘r’ in ‘cat’!
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{ cat} \]
\[T: \text{ car l c a r r i e d t h e c a t} \]
\[\text{cat} \]
\[\theta 1 2 3 4 5 6 7 8 9 \ldots \]

What does this alignment tell us?

2) Our pattern doesn’t match at *later* alignments

\[\text{cat} \quad \text{car} \]

There is no ‘r’ in ‘cat’!
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{cat} \]

\[T: \text{carl carried the cat} \]

\[\text{cat} \]

\[\emptyset 1 2 3 4 5 6 7 8 9 \ldots \]

What does this alignment tell us?

2) Our pattern doesn’t match at *later* alignments

- There is no ‘r’ in ‘cat’!
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{cat} \]
\[T: \text{carl carried the cat} \]
\[\text{cat} \]
\[\text{cat} \quad \text{skip!} \]
\[\text{cat} \quad \text{skip!} \]

What does this alignment tell us?

2) Our pattern doesn’t match at *later* alignments

\[\text{car} \quad \text{There is no ‘r’ in ‘cat’!} \]
\[\text{cat} \]
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{word} \]

\[T: \text{There would have been a ...} \]

\[\ldots \text{word} \ldots\]

\[0123456789\ldots\]
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{word} \]

\[T: \text{There would have been a \ldots} \]

\[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\
\hline
\text{word} & \text{word} \\
\end{array} \]

1) Our pattern doesn’t match at this alignment

\[T: \text{woul} \]

\[P: \text{word} \]
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{word} \]

\[T: \text{There would have been a ...} \]

\[\text{word} \]

\[\text{0123456789...} \]

How many alignments can we skip?

2) Our pattern doesn’t match at *later* alignments

\[T: \text{woul} \]

\[P: \text{word} \]

There is no ‘u’ in ‘word’!
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{word} \]
\[T: \text{There would have been a ...} \]

How many alignments can we skip? 2

2) Our pattern doesn’t match at *later* alignments

\[T: \text{woul} \]
\[P: \text{word} \]

There is no ‘u’ in ‘word’!
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{word} \]

\[T: \text{There would have been a ... word word word word word word word word skip! word word word skip! word word} \]

How many alignments can we skip? \[2\]

2) Our pattern doesn’t match at *later* alignments

\[T: \text{woul} \]

\[P: \text{word} \]

There is no ‘u’ in ‘word’!
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{T A G A C} \]

\[T: \text{G T A G A T G G C T G A T C G A G T A G C G G C G} \]

- \text{T A G A C}

How many alignments can we skip? 3

There IS a T in ‘TAGAC’!
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: T A G A C \]
\[T: G T A G A T G G C T G A T C G A G T A G C G G C G \]

How many alignments can we skip? 3

There IS a T in ‘TAGAC’!
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \ A \ A \ B \ B \ B \]
\[T: \ A \ A \ A \ B \ A \ B \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \]
\[\quad \vdash \ A \ A \ B \ B \ B \]

How many alignments can we skip? 1

AABAB

There IS an A in ‘AAABB’!
Boyer-Moore

Intuition: Learn from alignments to avoid others

\[P: \text{A A B B B} \]

\[T: \text{A A A B A B A A A A A A A A A A A A A A A A} \]

\[\text{A A B B B} \quad \text{skip!} \]

\[\text{A A B B B} \quad \text{the first match we encounter!} \]

How many alignments can we skip? \textbf{1}

AAB\textbf{AB}
AAB\textbf{BB}

There IS an A in ‘AAABB’!
Boyer-Moore: Bad Character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) P moves past mismatched character. (c) If there was no mismatch, don't skip.
Boyer-Moore: Bad Character rule

Step 1:

- **T:** CCTTCTGCTACCTTTTGCGCGCGCGC
- **P:** CCTTTTGC
- Skip!

Step 2:

- **T:** CCTTCCTGCTACCTTTTGCGCGCGCGC
- **P:** CCTTTTGCG

Step 3:

- **T:** CCTTCCTGCTACCTTTTGCGCGCGCGC
- **P:** CCTTTTGCG
- Skip!

We skipped three alignments

Can we do anything to make this better?
Boyer-Moore: Bad Character rule

Which of the following alignments skips the most?

A)
\[T: \text{TATAT...} \]
\[P: \text{TAGAC} \]

B)
\[T: \text{TTGAT...} \]
\[P: \text{TAGAC} \]

C)
\[T: \text{TAGAT...} \]
\[P: \text{TAGAC} \]

D)
\[T: \text{TAGTT...} \]
\[P: \text{TAGAC} \]
Boyer-Moore: Bad Character rule improvement

Continue to test alignment from left-to-right

\[P: \text{T A G A C} \]

\[T: \text{G T A G A T G G C T G A T C G A G T A G C G G C G} \]

\[\text{T A G A C} \]

... but compare \textit{characters} from right to left.
Right-to-left-scanning w/ BC Rule

\[P: \text{word} \]

\[T: \text{There would have been a ... word} \]

How many alignments do we skip?

There is no ‘l’ in ‘word’!
Right-to-left-scanning w/ BC Rule

P: word

T: There would have been a ...

How many alignments do we skip? 3
Right-to-left-scanning w/ BC Rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) P moves past mismatched character. (c) If there was no mismatch, don't skip.
Right-to-left-scanning w/ BC Rule

Step 1:

T: CCTTCTGCTACCTTTTGGCGCGCGCGGGAA
P: CCTTTTGGC

Step 2:

T: CCTTCTGCTACCTTTTGGCGCGCGCGGGAA
P: CCTTTTGGC

Step 3:

T: CCTTCTGCTACCTTTTGCGCGCGCGGGAA
P: CCTTTTGGC

Up to step 3, we skipped 8 alignments

5 characters in T were never looked at
Right-to-left-scanning w/ BC Rule

Learn from character comparisons to skip pointless alignments

1. When we hit a mismatch c, move P along until c becomes a match (or P moves past c) "Bad character rule"

2. Try alignments in one direction, but do character comparisons in *opposite* direction "Right-to-left scanning"

How do we put the first two rules in practice?

Exact pattern matching \textbf{w/ Boyer-Moore}

Boyer Moore \textbf{preprocesses} the pattern

\begin{align*}
\text{Preprocess} & \quad \approx O(\mid P \mid) \\
\text{Boyer-Moore} & \quad \approx O(\mid P \mid + \mid T \mid)
\end{align*}

Find instances of P in T

‘instances’: An exact, full length copy
Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: \(P: \ T\ C\ G\ C \) \(\Sigma: \ A\ C\ G\ T \)

The goal is to produce a table which tracks *skips*
Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: \(P: \text{T C G C} \quad \Sigma: \text{A C G T} \)

The goal is to produce a table which tracks **skips**

<table>
<thead>
<tr>
<th>(\Sigma)</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: \(P: \) T C G C \(\Sigma: \) A C G T

The goal is to produce a table which tracks *skips*

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

\(P: \) T C G C

Boyer-Moore: BC rule preprocessing
Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: \(P: T C G C \quad \Sigma: A C G T \)

The goal is to produce a table which tracks \textit{skips}

\[
\begin{array}{|c|c|c|c|}
\hline
\Sigma & T & C & G & C \\
\hline
A & & & & \\
C & & & & \\
G & & & & \\
T & & & 2 & \\
\hline
\end{array}
\]

\(T: ??? A ??? ??? \quad P: T C G C \)
Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: $P: T C G C$, $\Sigma: A C G T$

The goal is to produce a table which tracks skips

\[
\begin{array}{cccc}
\Sigma & T & C & G & C \\
A & & & & 3 \\
C & & & & \\
G & & & & \\
T & & & & 2 \\
\end{array}
\]

$P: T C G C$
Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: \(P: TCGC \) \(\Sigma: ACGT \)

The goal is to produce a table which tracks *skips*

\[
\begin{array}{cccc}
P & T & C & G & C \\
\hline
\Sigma & \Sigma \\
A & 0 & 1 & 2 & 3 \\
C & 0 & - & 0 & - \\
G & 0 & 1 & - & 0 \\
T & - & 0 & 1 & 2 \\
\end{array}
\]
Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: P: B A B A A A B Σ: A B
Boyer-Moore: BC rule preprocessing

Preprocessing requires two args:

\[P: B \ A \ B \ A \ A \ A \ B \]

\[\Sigma: A \ B \]

For each character \(p \) in pattern \(P \)

For each character \(c \) in alphabet \(\Sigma \)

Find the closest previous instance of \(p \) (to the left of \(c \)).
Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: \(P: B A B A A A B \) \(\Sigma: A B \)

For each character \(p \) in pattern \(P \)

For each character \(c \) in alphabet \(\Sigma \)

Find the closest previous instance of \(p \) (to the left of \(c \)).

<table>
<thead>
<tr>
<th>(\Sigma)</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: \(P: B \ A \ B \ A \ A \ A \ A \ B \) \hspace{1cm} \(\Sigma: A \ B \)

For each character \(p \) in pattern \(P \)

For each character \(c \) in alphabet \(\Sigma \)

Find the closest previous instance of \(p \) (to the left of \(c \)).

<table>
<thead>
<tr>
<th>Pattern</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Assignment 4: a_bmoore

Learning Objective:

Implement preprocessing of patterns with Boyer-Moore*

Observe Boyer-Moore* efficiency as a heuristic

Due: February 21th 11:59 PM

Consider: Optimal preprocessing is $\theta(|P| |\Sigma|)$. Can you code it?
Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments
Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Σ

T: G G G G G G G G G G
P: T C G C
Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Σ

T: A A T C A A T A G C
P: T C G C
Boyer-Moore: Tracking total skips

<table>
<thead>
<tr>
<th>Σ</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

T: B B B B

T: B B B B B

T: B B B B B
Boyer-Moore: Tracking total skips

\[\Sigma \]

\[\begin{array}{ccc}
A & A & A \\
A & 0 & 0 & 0 \\
B & 0 & 1 & 2 \\
\end{array} \]

\[P \]

\[T: B \ B \ B \ B \]
Assignment 4: a_bmoore

Learning Objective:

Implement preprocessing of patterns with Boyer-Moore*

Observe Boyer-Moore* efficiency as a heuristic

Due: February 21th 11:59 PM

Consider: Our Boyer-Moore is theoretically slower than Z-algorithm. But is it slower in practice? What is our total character comparisons?