CS 225

Data Structures

April 28 - Dijkstra's Algorithm Analysis G Carl Evans

What is left

- Last Lab Starts today due Sunday
- Last Exam Friday in CBTF during lecture time
- Last MP finished yesterday
- 24-hour extensions
- run for $m p$ intro, $m p$ _stickers, $m p$ _list*, mp_mosaics
- run for mp_traversals and mp_mazes run by weekend
- 90\% Regrade
- form will be posted on Monday due by Wednesday.
- Will grade the code in the repo on Wednesday May $5^{\text {th }}$ at 11:59pm.
- Final Project Done by May $12^{\text {th }}$
(This is a hard deadline due to timeline to grade)

Dijkstra's Algorithm (SSSP)

	DijkstraSSSP (G, s) :
6	foreach (Vertex v : G) :
7	$\mathrm{d}[\mathrm{v}]=+\mathrm{inf}$
8	$p[v]=$ NULL
9	$\mathrm{d}[\mathrm{s}]=0$
10	
11	PriorityQueue Q // min distance, defined by d[v]
12	Q.buildHeap (G.vertices())
13	Graph T // "labeled set"
14	
15	repeat n times:
16	Vertex $u=$ Q.removeMin()
17	T. add (u)
18	foreach (Vertex v : neighbors of u not in T) :
19	if cost(u, v) $+\mathrm{d}[\mathrm{u}]<\mathrm{d}[\mathrm{v}]$:
20	$d[v]=\operatorname{cost}(u, v)+d[u]$
21	$\mathrm{p}[\mathrm{v}]=\mathrm{u}$

Dijkstra's Algorithm (SSSP)

Dijkstra gives us the shortest path from our path (single source) to every connected vertex!

Dijkstra's Algorithm (SSSP)

Q: How does Dijkstra handle a single heavy-weight path vs. many light-weight paths?

Dijkstra's Algorithm (SSSP)

Q: How does Dijkstra handle a single heavy-weight path vs. many light-weight paths?

Dijkstra's Algorithm (SSSP)

Q: How does Dijkstra handle a single heavy-weight path vs. many light-weight paths?

Dijkstra's Algorithm (SSSP)

Q: How does Dijkstra handle undirected graphs?

Dijkstra's Algorithm (SSSP)

Q: How does Dijkstra handle negative weight cycles?

Shortest Path $(\mathrm{A} \rightarrow \mathrm{E}): \underset{\text { Length: } 12}{\mathrm{~A} \rightarrow \mathrm{E} \rightarrow \mathrm{E}} \frac{\rightarrow(\mathrm{C} \rightarrow \mathrm{H} \rightarrow \mathrm{G} \rightarrow \mathrm{E})^{*}}{\text { Length: }-5 \text { (repeatable) }}$

Dijkstra's Algorithm (SSSP)

Q: How does Dijkstra handle negative weight edges, without a negative weight cycle?

Dijkstra's Algorithm (SSSP)

Q: How does Dijkstra handle negative weight edges, without a negative weight cycle?

Dijkstra's Algorithm (SSSP)

What is Dijkstra's running time?

```
DijkstraSSSP(G, s):
    foreach (Vertex v : G):
        d[v] = +inf
        p[v] = NULL
    d[s]=0
    PriorityQueue Q // min distance, defined by d[v]
    Q.buildHeap (G.vertices())
    Graph T
        // "labeled set"
    repeat }\textrm{n}\mathrm{ times:
        Vertex u = Q.removeMin()
        T.add(u)
        foreach (Vertex v : neighbors of u not in T):
            if cost(u, v) + d[u] < d[v]:
            d[v] = cost(u, v) + d[u]
            p[v] = u
    return T
```


Landmark Path Problem

Suppose you want to travel from A to G. Q1: What is the shortest path from \mathbf{A} to \mathbf{G} ?

Landmark Path Problem

Suppose you want to travel from A to G.
Q2: What is the fastest algorithm to use to find the shortest path?

Landmark Path Problem

In your journey between \mathbf{A} and \mathbf{G}, you also want to visit the landmark \mathbf{L}.
Q3: What is the shortest path from \mathbf{A} to \mathbf{G} that visits \mathbf{L} ?

Landmark Path Problem

In your journey between \mathbf{A} and \mathbf{G}, you also want to visit the landmark L.
Q4: What is the fastest algorithm to find this path? Q5: What are the specific call(s) to this algorithm?

