
CS 225
Data	Structures

April 9 – Hashing II
Brad Solomon

Team Contract and Proposal Due April 9th

Team	Contract:

Project	Proposal:

Be	sure	to	‘sign’	electronically.	

Non-participants	may	be	removed	from	groups!

One	of	your	three	algorithms	should	be	completed	by	mid-
project	check-in.

Learning Objectives

• Review	fundamentals	of	hash	tables	

• Introduce	closed	hashing	approaches	to	hash	collisions	

• Determine	when	and	how	to	resize	a	hash	table	

• Justify	when	to	use	different	index	approaches	

• If	time:	General	strategies	for	creating	a	hash	function

A Hash Table based Dictionary

A	Hash	Table	consists	of	three	things:	
1. 	A	hash	function	

2. A	data	storage	structure	
		

3. A	method	of	addressing	hash	collisions

Dictionary<KeyType, ValueType> d;
d[k] = v;

1
2

Client	Code:

Key Value Hash
Bob B+ 2
Anna A- 4
Alice A+ 4
BeSy B 2
BreS A- 2
Greg A 0
Sue B 7
Ali B+ 4

Laura A 7
Lily B+ 7

Insertion (Separate Chaining)

0
1 ∅

2
3 ∅

4
5 ∅

6 ∅

7
8 ∅

9 ∅

10 ∅

Greg
A
∅

BreS
A-

BeSy
B

Bob
B+
∅

Ali
B+

Alice
A+

Anna
A-
∅

Lily
B+

Laura
A

Sue
B
∅

Hash Table (Separate Chaining)

For	hash	table	of	size	m	and	n	elements:

find	runs	in:	__________.

insert	runs	in:	__________.

remove	runs	in:	__________.

Simple Uniform Hashing Assumption

Given	table	of	size	 ,	a	simple	uniform	hash,	 ,	implies	

	where	 	,		 	

m h

∀k1, k2 ∈ U k1 ≠ k2 Pr(h[k1] = h[k2]) =
1
m

Uniform:	keys	are	equally	likely	to	hash	to	any	position

Independent:	key	hash	values	are	independent	of	other	keys

Expected	length	of	chain	is	_____________.

Separate Chaining Under SUHA

Under	SUHA,	a	hash	table	of	size	m	and	n	elements:

Separate Chaining Under SUHA

find	runs	in:	__________.

insert	runs	in:	__________.

remove	runs	in:	__________.

Under	SUHA,	a	hash	table	of	size	m	and	n	elements:

Open vs Closed Hashing

• Open	Hashing:	store	k,v	pairs	externally

• Closed	Hashing:	store	k,v	pairs	in	the	hash	table

Addressing	hash	collisions	depends	on	your	storage	structure.

Collision Handling: Probe-based Hashing
(Example	of	closed	hashing)

0
1
2
3
4
5
6

h(k)	=	k	%	7
S	=	{	1,	8	,	15}	 |S|	=	n

|Array|	=	m

Collision Handling: Linear Probing
(Example	of	closed	hashing)

|S|	=	n
|Array|	=	mh(k)	=	k	%	7

S	=	{	16,	8,	4,	13,	29,	11,	22	}	

h(k,	i)	=	(k	+	i)	%	7	
Try	h(k)	=	(k	+	0)	%	7,	if	full…	
Try	h(k)	=	(k	+	1)	%	7,	if	full…	
Try	h(k)	=	(k	+	2)	%	7,	if	full…	
Try	…

0
1
2
3
4
5
6

Collision Handling: Linear Probing
(Example	of	closed	hashing)

|S|	=	n
|Array|	=	mh(k,	i)	=	(k	+	i)	%	7

S	=	{	16,	8,	4,	13,	29,	11,	22	}	

0
1
2
3
4
5
6

_find(29)

_remove(16)

Worst	Case SUHA

Insert

Remove/Find

A Problem w/ Linear Probing
Primary	clustering:	

																							Description:	

																							Remedy:

0
1 1
2 1’
3 3
4 1’’
5 3’
6
7
8
9

Collision Handling: Quadratic Probing
(Example	of	closed	hashing)

|S|	=	n
|Array|	=	mh(k)	=	k	%	7

S	=	{	16,	8,	4,	13,	29,	11,	22	}	

h(k,	i)	=	(k	+	i*i)	%	7	
Try	h(k)	=	(k	+	0)	%	7,	if	full…	
Try	h(k)	=	(k	+	1*1)	%	7,	if	full…	
Try	h(k)	=	(k	+	2*2)	%	7,	if	full…	
Try	…

0
1 8
2 16
3
4 4
5
6 13

A Problem w/ Quadratic Probing
Secondary	clustering:	

																							Description:	

																							Remedy:

0 0
1 0’
2
3
4 0’’
5
6
7
8
9 0’’’

Collision Handling: Double Hashing
(Example	of	closed	hashing)

|S|	=	n
|Array|	=	mh1(k)	=	k	%	7

S	=	{	16,	8,	4,	13,	29,	11,	22	}	

h(k,	i)	=	(h1(k)	+	i*h2(k))	%	7	
Try	h(k)	=	(k	+	0*h2(k))	%	7,	if	full…	
Try	h(k)	=	(k	+	1*h2(k))	%	7,	if	full…		
Try	h(k)	=	(k	+	2*h2(k))	%	7,	if	full…	
Try	…

0
1 8
2 16
3
4 4
5
6 13

h2(k)	=	5	-	(k	%	5)

Running Times

Open	Hashing:

Closed	Hashing:

insert:	__________.

find/	remove:	__________.

insert:	__________.

find/	remove:	__________.

(Don’t	memorize	these	equations,	no	need.)	
(Expectation	under	SUHA)

Running Times

Linear	Probing:	
• Successful:		½(1	+	1/(1-α))	
• Unsuccessful:	½(1	+	1/(1-α))2	

Double	Hashing:	
• Successful:		1/α	*	ln(1/(1-α))	
• Unsuccessful:	1/(1-α)	

Separate	Chaining:	
• Successful:		1	+	α/2	
• Unsuccessful:	1	+	α

The	expected	number	of	probes	for	find(key)	under	SUHA
(Don’t	memorize	these	equations,	no	need.)	

Instead,	observe:	
- As	α	increases:	
	

- If	α	is	constant:

Running Times

Linear	Probing:	
• Successful:		½(1	+	1/(1-α))	
• Unsuccessful:	½(1	+	1/(1-α))2	

Double	Hashing:	
• Successful:		1/α	*	ln(1/(1-α))	
• Unsuccessful:	1/(1-α)

The	expected	number	of	probes	for	find(key)	under	SUHA

#	
Pr
ob

es
#	
Pr
ob

es

α

α

ReHashing
What	if	the	array	fills?

Which	collision	resolution	strategy	is	better?	
•	 Big	Records:	

•	 Structure	Speed:	

What	structure	do	hash	tables	implement?	

What	constraint	exists	on	hashing	that	doesn’t	exist	with	
BSTs?	

Why	talk	about	BSTs	at	all?

Running Times
Hash	Table AVL Linked	List

Find

Amortized:	

	
Worst	Case:

Insert

Amortized:	
	
	
Worst	Case:

Storage	Space

std data structures

std::map	

std data structures

std::map	
			::operator[]	
			::insert	
			::erase	
	
			::lower_bound(key)	➔	Iterator	to	first	element	≤	key	
			::upper_bound(key)	➔ Iterator	to	first	element	>	key

std data structures

std::unordered_map	
			::operator[]	
			::insert	
			::erase	
	
			::lower_bound(key)	➔	Iterator	to	first	element	≤	key	
			::upper_bound(key)	➔ Iterator	to	first	element	>	key	

std data structures

std::unordered_map	
			::operator[]	
			::insert	
			::erase	
	
			::lower_bound(key)	➔	Iterator	to	first	element	≤	key	
			::upper_bound(key)	➔ Iterator	to	first	element	>	key	
	
			::load_factor()	
			::max_load_factor(ml)	➔ Sets	the	max	load	factor

Bonus Slides

Hash Function (Division Method)

Hash	of	form:	 	h(k) = k % m

Pro:

Con:

Hash Function (Multiplication Method)

Hash	of	form:	 ,		h(k) = ⌊m(kA % 1)⌋ 0 ≤ A ≤ 1

Pro:

Con:

Hash Function (Universal Hash Family)

Hash	of	form:	 ,		hab(k) = ((ak + b) % p) % m a, b ∈ Z*p , Zp

,		∀k1 ≠ k2 Pra,b(hab[k1] = hab[k2]) ≤
1
m

Pro:

Con:

