

#26: Hashing: Collision Handling

5 April 9, 2021 · Brad Solomon

Every hash table contains three pieces:

- 1. A hash function, f(k): keyspace \rightarrow integer
- 2. A data storage structure. (Usually an array)
- 3. A method of handling **hash collisions**.

Dealing with hashing depends on which type of storage structure you are using.

Open Hashing:

Closed Hashing:

Collision Handling Strategy #1: Linear Probing

Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ h(k) = k % 7, |Array| = N

[0]	
[1]	
[2]	
[3]	
[4]	
[5]	
[6]	

[7]

Linear Probing:

Try h(k) = (k + 0) % 7, if full... Try h(k) = (k + 1) % 7, if full... Try h(k) = (k + 2) % 7, if full...

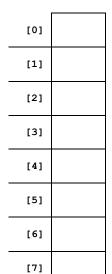
•••

What problem occurs?

Collision Handling Strategy #2: Quadratic Probing

Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ h(k) = k % 7, |Array| = N

[0] [1] [2] [3] [4] [5] [6]


Quadratic Probing:

Try h(k) = (k + 0) % 7, if full... Try h(k) = (k + 1*1) % 7, if full... Try h(k) = (k + 2*2) % 7, if full...

What problem occurs?

Collision Handling Strategy #3: Double Hashing:

Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ $h_1(k) = k \% 7, h_2(k) = 5 - (k \% 5), |Array| = N$

Double Hashing:

Try h(k) = $(k + + o*h_2(k)) \% 7$, if full... Try h(k) = $(k + + 1*h_2(k)) \% 7$, if full... Try h(k) = $(k + + 2*h_2(k)) \% 7$, if full...

 $h(k, i) = (h_1(k) + i*h_2(k)) \% 7$

Running Time:

Linear Probing:

Successful: $\frac{1}{2}(1 + \frac{1}{1-\alpha})$

Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$

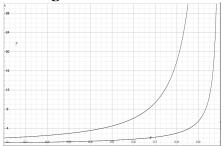
Double Hashing:

Successful: $1/\alpha * \ln(1/(1-\alpha))$

Unsuccessful: $1/(1-\alpha)$

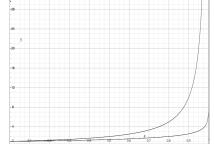
Separate Chaining:

Successful: $1 + \alpha/2$


Unsuccessful: $1 + \alpha$

Running Time Observations:

1. As α increases:


2. If α is held constant:

Running Time Observations:

Linear Probing:

Successful: $\frac{1}{2}(1 + \frac{1}{1-\alpha})$ Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$

Double Hashing:

Successful: $1/\alpha * \ln(1/(1-\alpha))$

Unsuccessful: $1/(1-\alpha)$

ReHashing:

What happens when the array fills?

Better question:

Algorithm:

Which collision resolution strategy is better?

- Big Records:
- Structure Speed:

What structure do hash tables replace?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?

Analysis of Dictionary-based Data Structures

	Hash Table		AVL	List
	Amortized	Worst Case	AVL	List
Find				
Insert				
Storage Space				

CS 225 - Things To Be Doing:

- 1. Final Project Team Contract / Proposals due April 9th
- Mp traversal due April 12th.
- lab heaps due April 11th
- 4. Daily POTDs are ongoing!