

#22: AVL Applications March 19, 2021 · Brad Solomon

AVL – Proof of Runtime

On Friday, we proved an upper-bound on the height of an AVL tree is **2***lg(n) or O(lg(n)).

AVL Trees	Red-Black Trees
Balanced BST	Balanced BST
Max height: $1.44 * lg(n)$	Functionally equivalent to AVL trees; all key operations runs in O(h) time.
Q : why is our proof 2 $\log(n)$?	Max height: 2 * lg(n)
Rotations: - find:	Rotations: - find:
- insert:	- insert:
- remove:	- remove:

In CS 225, we learned **AVL trees** because they're intuitive and I'm certain we could have derived them ourselves given enough time. A red-black tree is simply another form of a balanced BST that is also commonly used.

Summary of Balanced BSTs:

(Includes both AVL and Red-Black Trees)

Advantages	Disadvantages

Using a Red-Black Tree in C++

C++ provides us a balanced BST as part of the standard library: std::map<K, V> map;

The map implements a dictionary ADT. Primary means of access is through the overloaded **operator**[]:

V & std::map<K, V>::operator[] (const K &) This function can be used for both insert and find!

Removing an element: void std::map<K, V>::erase(const K &);

Range-based searching:

iterator std::map<K, V>::lower_bound(const K &); iterator std::map<K, V>::upper_bound(const K &);

Iterators and MP4

Three weeks ago, you saw that you can use an iterator to loop through data:

1	DFS dfs();
2	<pre>for (ImageTraversal::Iterator it = dfs.begin();</pre>
	it != dfs.end(); ++it) {
3	std::cout << (*it) << std::endl;
4	}

You will use iterators extensively in MP4, creating them in Part 1 and then utilizing them in Part 2. Given the iterator, you can use the foreach syntax available to you in C++:

1 DFS dfs(...); 2 for (const Point & p : dfs) { 3 std::cout << p << std::endl; 4 }

The exact code you might use will have a generic **ImageTraversal**:

1 ImageTraversal & traversal = /* ... */;

```
2 for ( const Point & p : traversal ) {
```

3 std::cout << p << std::endl;
4 }</pre>

Running Time of Every Data Structure So Far:

	Unsorted	Sorted	Unsorted	Sorted
	Array	Array	List	List
Find				
Insert				
Remove				
Traverse				

	Binary Tree	BST	AVL
Find			
Insert			
Remove			
Traverse			

BTree Motivation

Big-O assumes uniform time for all operations, but this isn't always true.

However, seeking data from the cloud may take 100ms+.

 \dots an O(lg(n)) AVL tree no longer looks great:

Consider Instagram profile data:

How many profiles?		
How much data /profile?		
	AVL Tree	BTree
Tree Height		

BTree Motivations

Knowing that we have long seek times for data, we want to build a data structure with two (related) properties:

1.

2.

BTree_m

Goal: Build a tree that uses _____ /node! _____ /node! _____ /node!

CS 225 – Things To Be Doing:

- 1. Final Project Teams due March 26th!
- **2.** mp_mosaic due on March 29th!
- **3.** lab_trees due on March 28th!
- **4.** Daily POTDs are ongoing!