

#22: AVL Applications
March 19, 2021 · Brad Solomon

AVL – Proof of Runtime
On Friday, we proved an upper-bound on the height of an AVL tree is
2*lg(n) or O(lg(n)).

AVL Trees Red-Black Trees
Balanced BST

Max height: 1.44 * lg(n)
Q: Why is our proof 2*lg(n)?

Rotations:
- find:

- insert:

- remove:

Balanced BST
Functionally equivalent to AVL trees; all key
operations runs in O(h) time.

Max height: 2 * lg(n)

Rotations:
- find:

- insert:

- remove:

In CS 225, we learned AVL trees because they’re intuitive and I’m
certain we could have derived them ourselves given enough time. A
red-black tree is simply another form of a balanced BST that is also
commonly used.

Summary of Balanced BSTs:
(Includes both AVL and Red-Black Trees)

Advantages Disadvantages

Using a Red-Black Tree in C++
C++ provides us a balanced BST as part of the standard library:
 std::map<K, V> map;

The map implements a dictionary ADT. Primary means of access is
through the overloaded operator[]:
 V & std::map<K, V>::operator[](const K &)
 This function can be used for both insert and find!

Removing an element:
 void std::map<K, V>::erase(const K &);

Range-based searching:
 iterator std::map<K, V>::lower_bound(const K &);
 iterator std::map<K, V>::upper_bound(const K &);

Iterators and MP4
Three weeks ago, you saw that you can use an iterator to loop through
data:

1
2

3
4

DFS dfs(...);
for (ImageTraversal::Iterator it = dfs.begin();
 it != dfs.end(); ++it) {
 std::cout << (*it) << std::endl;
}

You will use iterators extensively in MP4, creating them in Part 1 and
then utilizing them in Part 2. Given the iterator, you can use the for-
each syntax available to you in C++:

1
2
3
4

DFS dfs(...);
for (const Point & p : dfs) {
 std::cout << p << std::endl;
}

The exact code you might use will have a generic ImageTraversal:

1
2
3
4

ImageTraversal & traversal = /* ... */;
for (const Point & p : traversal) {
 std::cout << p << std::endl;
}

Running Time of Every Data Structure So Far:

 Unsorted
Array

Sorted
Array

Unsorted
List

Sorted
List

Find

Insert

Remove

Traverse

 Binary Tree BST AVL
Find

Insert

Remove

Traverse

BTree Motivation
Big-O assumes uniform time for all operations, but this isn’t always
true.

However, seeking data from the cloud may take 100ms+.
 …an O(lg(n)) AVL tree no longer looks great:

Consider Instagram profile data:

How many
profiles?

How much data
/profile?

 AVL Tree BTree
Tree Height

BTree Motivations
Knowing that we have long seek times for data, we want to build a
data structure with two (related) properties:

1.

2.

BTreem

Goal: Build a tree that uses _________________ /node!
 …optimize the algorithm for your platform!

CS 225 – Things To Be Doing:
1. Final Project Teams due March 26th!
2. mp_mosaic due on March 29th!
3. lab_trees due on March 28th!
4. Daily POTDs are ongoing!

