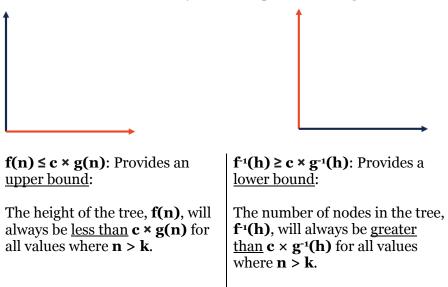


#21: AVL Analysis 2 5 March 17, 2021 · Brad Solomon

AVL Insertion

AVL Removal


Running Times:

	AVL Tree
find	
insert	
remove	

Motivation:

Big-O is defined as:

Let **f(n)** describe the height of an AVL tree in terms of the number of nodes in the tree (**n**). Visually, we can represent the big-O relation:

Plan of Action:

Goal: Find a function that defines the lower bound on **n** given **h**.

Given the goal, we begin by defining a function that describes the smallest number of nodes in an AVL of height h:

Proving our IH:

V. Using a proof by induction, we have shown that:

...and by inverting our finding:

Theorem:

An AVL tree of height **h** has at least ______.

I. Consider an AVL tree and let **h** denote its height.

II. Case: _____

III. Case: _____

Summary of Balanced BSTs:

Disadvantages

IV. Case:

Inductive hypothesis (IH):

CS 225 – Things To Be Doing:

- 1. Final Project Teams due March 26th!
- 2. mp_mosaic due on March 29th!
- a. lab_trees due on March 28th!
 4. Daily POTDs are ongoing!