

Binary Search Tree (BST) Finale Q: How does our data determine the height?

1324576 vs. 4236715

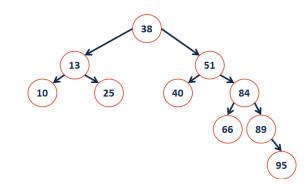
Height Balance on BST What tree makes you happier?

Let us describe the **balance** (**b**) of a BST to be:

Q: How many different ways are there to insert data into a BST?

Q: What is the average height of every arrangement?

....what's the intuition for this argument?


	BST	BST	Sorted	Sorted List
operation	Avg. Case	Worst Case	Array	
find				
insert				
delete				
traverse				

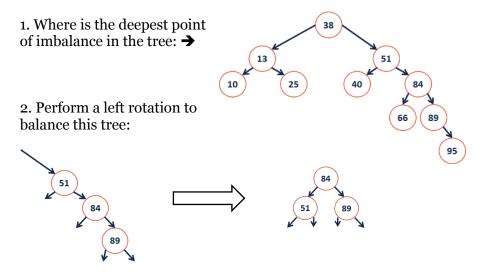
• If **b** is negative:

• If **b** is positive:

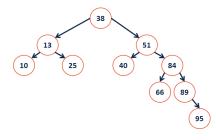
We define a BST tree T to be **height balanced** if:

A node is considered to be **out of balance** it's not height balanced. What is the lowest node that is out of balance?

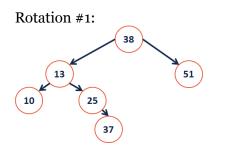
Brining a tree back into balance


Goal: Create a strategy to bring a BST back into balance after an operation has caused the three to be out of balance.

A Tree Rotation is an operation that maintains two properties:


1.

2.


Example 1: Defining a Rotation

Implementing a left rotation:

Example 2: A Complex Rotation

Rotation #2:

BST Rotation Summary:

- 1. Four kinds of rotations (L, R, LR, and RL)
- 2. All rotations are local
- 3. All rotations run in constant time, O(1)
- 4. BST property is maintained!

Overall Goal:

...and we call these trees:

CS 225 – Things To Be Doing:

- 1. mp_mosaics EC due Monday
- **2.** lab_huffman due Sunday
- 3. Daily POTDs