

Lab_hash : Hellish Hash Tables

Lab #11 – April 21 – 25, 2021

Welcome to Lab Hash!
Course Website: https://courses.engr.illinois.edu/cs225/sp2021/assignments/

Overview
Hash tables are the most efficient data structure you will learn about
in CS 225. On average, insert, remove, and find operations all run in
average O(1) for hash tables no matter the size of the table or how
many elements are in it. This is why hash tables are a favorite data
structures among CS people; they are often the underlying structure to
library data types (i.e. dictionaries or unorderedMap in C++).

Linear Probing:
A collision in a hash table happens when the hash function h gives
the same index h(v)=h(w) for different data values v and w as they
are being inserted into the table. Linear Probing is one strategy to deal
with collisions in a hash table. The way it works is: if h(v) = i causes a
collision (index i is already occupied), then we increment i++ until we
find an empty spot in the table. Use the modulus function to “wrap
around” and continue incrementing from the start of the table when
the end is reached. The idea of double hashing is to add a second
hash function that will be used as a step function to avoid clusters.
Exercise 1.1: (Linear Probing) We want to insert 4, 6, and 14 into the
hash table below. Suppose that our hash function gives: h(4) = 1, h(6)
= 0, and h(14)=2. How would the table look after inserting 4, 6 and 14
in that order? What about if we insert 6, 14, then 4?

 4, 6, then 14 6, 14, then 4

Exercise 1.2: (Double Hashing) Suppose that our first hash function
gives: h(4) = 1, h(6) = 0, h(14) = 5. And suppose our second hash
function (used as the step function) gives: h’(4)=2, h’(6)=1, h’(14) = 3.
How would the table look after inserting 6, 4, and 14 in that order?

 6, 4, then 14

Separate Chaining:
In a hash table that uses separate chaining, instead of holding the
inserted data values, each slot in the table holds a pointer to the head
of a linked list where the actual data values are stored; this is called
open hashing. Thus, if a collision occurs, then the new data value is
simply inserted at the head of the linked list for that slot. For
example: if h maps a, b, and c all to index i, then at index i we will
have the linked list: c→ b→ a→ NULL.

Exercise 2.1: We want to insert 5, 11, and 7 into the (overloaded)
hash table below. Our hash function gives us: h(5)=0, h(11)=2, and
h(7)=3. How will the hash table look after we insert these elements?
Which of the elements causes a collision?

Exercise 2.2: What is the worst possible runtime for the insert()
function if we are using separate chaining to resolve collisions?
What about the worst possible runtime for the find() function?
insert() will always be O(1) because we insert into the head of the
linked list. find() however can be O(n) at the worst.

Resizing the Table:
The load factor of a hash table is an important statistic when it comes
to gauging when to resize the table. The load factor is calculated by
dividing the number of elements inserted into the table by the size of
the table. Once the load factor is greater than or equal to a chosen
threshold, the size of table should be approximately doubled to the
nearest prime number >= 2*(old table size). This is to help avoid the
issue of clustering and achieving a better uniform distribution. Since
h depends on the size of the table, the hash values of existing elements
WILL change once we resize; so REMEMBER to re-insert (re-hash)
every element into the table after resizing.

Exercise 3.1: For each of the hash tables below, calculate the load
factor. If we have a load factor threshold of 0.7 should we resize
these hash tables?

 ⅗ = 0.6 ⅗=0.6 ¾=0.75
 _____ ______ ______ ← load factors

 Y / N Y / N Y / N ← resize?

Exercise 3.2: Suppose that our hash function for the table below is
a simple mod function: h(x) = x mod TABLE_SIZE and we use
linear probing to resolve collisions. Our load factor threshold is 0.7,
so we will need to resize the table. Draw the new resized table.

Closest prime number to 2*5 is 11; so the new hash function is: h(x)
= x mod 11.

In the programming part of this lab, you will:

● Write the insert function for Linear Probing, and the remove
and resizeTable functions for Separate Chaining

● Solve two fun puzzle problems using hash tables:
AnagramFinder and LogfileParser

As your TA and CAs, we’re here to help with your

programming for the rest of this lab section!
☺

