April 12 – Graph Traversal
Wade Fagen-Ulmschneider, Craig Zilles
Graph ADT

Data:
- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:
- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);
Key Ideas:
- Given a vertex, $O(1)$ lookup in vertex list
 - Implement w/ a hash table, etc
- All basic ADT operations runs in $O(m)$ time
Adjacency Matrix

Key Ideas:
- Given a vertex, $O(1)$ lookup in vertex list
- Given a pair of vertices (an edge), $O(1)$ lookup in the matrix
- Undirected graphs can use an upper triangular matrix
Graph Implementation: Edge List

![Graph Diagram]

- Vertices: u, v, w, z
- Edges: (u, v), (v, w), (u, w), (w, z), (u, c), (v, b), (w, d)
Adjacency List

u → a, c
v → b, d
w → b, c, d
z → d

u → v, a
v → w, b
w → u, c
w → z, d
Adjacency List
Adjacency List

insertVertex(K key):
Adjacency List

removeVertex(Vertex v):

u
 a
 c
 b
w
 d
z
v

a
 c
 b
 d

u
 v
 a

v
 w
 b

w
 c
 z
 d

z
 d=1

w
 d=3

v
 d=2

u
 d=2

b
 c
 d
 e

d
Adjacency List

incidentEdges(Vertex v):

- \(u \): \(a, c \)
- \(v \): \(a, b \)
- \(w \): \(b, c, d \)
- \(z \): \(d \)
Adjacency List

areAdjacent(Vertex v1, Vertex v2):

D = 2

D = 3

D = 1
Adjacency List

insertEdge(Vertex v1, Vertex v2, K key):
<table>
<thead>
<tr>
<th>Expressed as $O(f)$</th>
<th>Edge List</th>
<th>Adjacency Matrix</th>
<th>Adjacency List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$n+m$</td>
<td>n^2</td>
<td>$n+m$</td>
</tr>
<tr>
<td>$\text{insertVertex}(v)$</td>
<td>1</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>$\text{removeVertex}(v)$</td>
<td>m</td>
<td>n</td>
<td>$\deg(v)$</td>
</tr>
<tr>
<td>$\text{insertEdge}(v, w, k)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\text{removeEdge}(v, w)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\text{incidentEdges}(v)$</td>
<td>m</td>
<td>n</td>
<td>$\deg(v)$</td>
</tr>
<tr>
<td>$\text{areAdjacent}(v, w)$</td>
<td>m</td>
<td>1</td>
<td>$\min(\deg(v), \deg(w))$</td>
</tr>
</tbody>
</table>
Exam Programming C

• Two programming questions:
 • Max/min heap implementation, up tree implementation, B-Tree find
 • + some application code using the data structure
 • HashTable find, delete, and resize
 • Double hashing, linear probing, or separate chaining

• Potentially a code reading question
Traversal:

Objective: Visit every vertex and every edge in the graph.

Purpose: Search for interesting sub-structures in the graph.

We’ve seen traversal beforebut it’s different:

- Ordered
- Obvious Start
-
Traversal: BFS
Traversal: BFS

<table>
<thead>
<tr>
<th>v</th>
<th>d</th>
<th>P</th>
<th>Adjacent Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traversal: BFS

<table>
<thead>
<tr>
<th>d</th>
<th>p</th>
<th>Adjacent Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>A C B D</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>B A C E</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>C B A D E F</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>D A C F H</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>E B C G</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>F C D G</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>G E F H</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>H D G</td>
</tr>
</tbody>
</table>
BFS(G):
Input: Graph, G
Output: A labeling of the edges on G as discovery and cross edges

foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
BFS Analysis

Q: Does our implementation handle disjoint graphs? If so, what code handles this?
 • *How do we use this to count components?*

Q: Does our implementation detect a cycle?
 • *How do we update our code to detect a cycle?*

Q: What is the running time?
Running time of BFS

While-loop at :19?

For-loop at :21?
BFS(G):
 Input: Graph, G
 Output: A labeling of the edges on G as discovery and cross edges

 foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
 foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)

 while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)