CS 225

Data Structures

April 8-Graphs
Wade Fagen-Ulmschneider

Graphs

To study all of these structures:

1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

HAMLET TROILUS AND CRESSIDA

Graph Vocabulary

$$
\begin{aligned}
& G=(V, E) \\
& V \mid=n \\
& |V|=n
\end{aligned}
$$

G_{1}

Incident Edges:
$1(v)=\{(x, v)$ in $E\}$
Degree(v): |I|
Adjacent Vertices:
$A(v)=\{x:(x, v)$ in $E\}$
Path $\left(G_{2}\right)$: Sequence of vertices connected by edges

Cycle(G_{1}): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Graph Vocabulary

$$
\begin{aligned}
& G=(V, E) \\
& V \mid=n \\
& |V|=n
\end{aligned}
$$

G_{1}

Subgraph(G):
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$:
$V^{\prime} \in V, E^{\prime} \in E$, and
$(u, v) \in E \rightarrow u \in V^{\prime}, v \in V^{\prime}$

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

Running times are often reported by \mathbf{n}, the number of vertices, but often depend on \mathbf{m}, the number of edges.

How many edges? Minimum edges:
Not Connected:

Connected*:

Maximum edges:

Simple:
Not simple:

$$
\sum_{v \in v} \operatorname{deg}(v)=
$$

Connected Graphs

O

Proving the size of a minimally connected graph

Theorem:
Every minimally connected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ has $|\mathbf{V}|-\mathbf{1}$ edges.

Thm: Every minimally connected graph $\mathbf{G}=(\mathbf{V}, \mathrm{E})$ has $|\mathbf{V}|-\mathbf{1}$ edges.
Proof: Consider an arbitrary, minimally connected graph $\mathbf{G}=(\mathbf{V}, \mathrm{E})$.
Lemma 1: Every connected subgraph of \mathbf{G} is minimally connected. (Easy proof by contradiction left for you.)

Suppose $|\mathrm{V}|=1$:

Definition: A minimally connected graph of 1 vertex has 0 edges.

Theorem: $|\mathrm{V}|-1$ edges $\rightarrow 1-1=0$.

Inductive Hypothesis: For any $\mathbf{j}<|\mathbf{V}|$, any minimally connected graph of \mathbf{j} vertices has \mathbf{j}-1 edges.

Suppose $|\mathrm{V}|>1$:

1. Choose any vertex:
2. Partition:

Suppose \mid V $\mid>1$:
3. Count the edge
3. Count the edges

Graph ADT

Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);

Graph Implementation: Edge List

Vertex Collection:

Edge Collection:

Graph Implementation: Edge List

 insertVertex(K key):
removeVertex(Vertex v):

Graph Implementation: Edge List

incidentEdges(Vertex v):
areAdjacent(Vertex v1, Vertex v2):
G.incidentEdges (v1). contains (v2)

Graph Implementation: Edge List

Graph Implementation: Adjacency Matrix

 insertVertex(K key); removeVertex(Vertex v); areAdjacent(Vertex v1, Vertex v2); incidentEdges(Vertex v);| | \mathbf{u} | \mathbf{v} | \mathbf{w} | \mathbf{z} |
| :---: | :---: | :---: | :---: | :---: |
| \mathbf{u} | | | | |
| \mathbf{v} | | | | |
| \mathbf{w} | | | | |
| \mathbf{z} | | | | |

