April 8 – Graphs
Wade Fagen-Ulmschneider
Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms
Graph Vocabulary

\[G = (V, E) \]
\[|V| = n \]
\[|E| = m \]

Incident Edges:
\[I(v) = \{ (x, v) \in E \} \]

Degree(v):
\[|I| \]

Adjacent Vertices:
\[A(v) = \{ x : (x, v) \in E \} \]

Path(G_2):
Sequence of vertices connected by edges

Cycle(G_1):
Path with a common begin and end vertex.

Simple Graph(G):
A graph with no self loops or multi-edges.
Graph Vocabulary

\[G = (V, E) \]
\[|V| = n \]
\[|E| = m \]

Subgraph(G):
\[G' = (V', E') \]
\[V' \in V, E' \in E, \text{ and } (u, v) \in E \Rightarrow u \in V', v \in V' \]

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)
Running times are often reported by n, the number of vertices, but often depend on m, the number of edges.

How many edges?

Minimum edges:
- Not Connected:

Connected*:

Maximum edges:
- Simple:
- Not simple:

$$\sum_{v \in V} \deg(v) =$$
Connected Graphs
Proving the size of a minimally connected graph

Theorem:
Every minimally connected graph $G=(V, E)$ has $|V|-1$ edges.
Thm: Every minimally connected graph $G=(V, E)$ has $|V|-1$ edges.

Proof: Consider an arbitrary, minimally connected graph $G=(V, E)$.

Lemma 1: Every connected subgraph of G is minimally connected. (Easy proof by contradiction left for you.)
Suppose $|V| = 1$:

Definition: A minimally connected graph of 1 vertex has 0 edges.

Theorem: $|V|-1$ edges $\Rightarrow 1-1 = 0.$
Inductive Hypothesis: For any $j < |V|$, any minimally connected graph of j vertices has $j-1$ edges.
Suppose $|V| > 1$:

1. Choose any vertex:

2. Partition:
Suppose $|V| > 1$:

3. Count the edges
Graph ADT

Data:
- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:
- `insertVertex(K key)`;
- `insertEdge(Vertex v1, Vertex v2, K key)`;
- `removeVertex(Vertex v)`;
- `removeEdge(Vertex v1, Vertex v2)`;
- `incidentEdges(Vertex v)`;
- `areAdjacent(Vertex v1, Vertex v2)`;
- `origin(Edge e)`;
- `destination(Edge e)`;
Graph Implementation: Edge List

Vertex Collection:

Edge Collection:
Graph Implementation: Edge List

insertVertex(K key):

removeVertex(Vertex v):
Graph Implementation: Edge List

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

G.incidentEdges(v1).contains(v2)
Graph Implementation: Edge List

insertEdge(Vertex v1, Vertex v2, K key):

```
u v a
v w b
u w c
w z d
```
Graph Implementation: Adjacency Matrix

- **insertVertex**(K key);
- **removeVertex**(Vertex v);
- **areAdjacent**(Vertex v1, Vertex v2);
- **incidentEdges**(Vertex v);

```
<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>w</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```