
CS 225
Data Structures

April 5 – Disjoint Sets Finale + Graphs
Wade Fagen-Ulmschneider, Craig Zilles

Disjoint Sets Find
int DisjointSets::find(int i) {

if (arr_[i] < 0) { return i; }
else { return _find(arr_[i]); }

}

1
2
3
4

void DisjointSets::unionBySize(int root1, int root2) {
int newSize = arr_[root1] + arr_[root2];

// If arr_[root1] is less than (more negative), it is the larger set;
// we union the smaller set, root2, with root1.
if (arr_[root1] < arr_[root2]) {

arr_[root2] = root1;
arr_[root1] = newSize;

}

// Otherwise, do the opposite:
else {

arr_[root1] = root2;
arr_[root2] = newSize;

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Path Compression

1

2

3

6

7

8

9

4

5

10

11

Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log*(n) =
0 , n ≤ 1
1 + log*(log(n)) , n > 1

What is lg*(265536)?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and
path compression on find:

Any sequence of m union and find operations result in the
worse case running time of O(____________),

where n is the number of items in the Disjoint Sets.

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

List
- Singly Linked List
- Doubly Linked List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

• Constant time access to any element, given an index
a[k] is accessed in O(1) time, no matter how large the array grows

• Cache-optimized
Many modern systems cache or pre-fetch nearby memory values
due the “Principle of Locality”. Therefore, arrays often perform
faster than lists in identical operations.

[1] [2] [3] [4] [5] [6] [7][0]
Array

• Efficient general search structure
Searches on the sort property run in O(lg(n)) with Binary Search

• Inefficient insert/remove
Elements must be inserted and removed at the location dictated by the
sort property, resulting shifting the array in memory – an O(n)
operation

[1] [2] [3] [4] [5] [6] [7][0]
Array

[1] [2] [3] [4] [5] [6] [7][0]

Sorted Array

• Constant time add/remove at the beginning/end
Amortized O(1) insert and remove from the front and of the array
Idea: Double on resize

• Inefficient global search structure
With no sort property, all searches must iterate the entire array; O(n)
time

[1] [2] [3] [4] [5] [6] [7][0]
Array

[1] [2] [3] [4] [5] [6] [7][0]

Unsorted Array

• First In First Out (FIFO) ordering of data
Maintains an arrival ordering of tasks, jobs, or data

• All ADT operations are constant time operations
enqueue() and dequeue() both run in O(1) time

[1] [2] [3] [4] [5] [6] [7][0]
Array

[1] [2] [3] [4] [5] [6] [7][0]
Unsorted Array

[1] [2] [3] [4] [5] [6] [7][0]
Queue (FIFO)

• Last In First Out (LIFO) ordering of data
Maintains a “most recently added” list of data

• All ADT operations are constant time operations
push() and pop() both run in O(1) time

[1] [2] [3] [4] [5] [6] [7][0]
Array

[1] [2] [3] [4] [5] [6] [7][0]
Unsorted Array

[1] [2] [3] [4] [5] [6] [7][0]
Stack (LIFO)

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

List
- Doubly Linked List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

List
- Doubly Linked List
- Skip List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

Graphs

The Internet 2003
The OPTE Project (2003)
Map of the entire internet; nodes
are routers; edges are connections.

Who’s the real main character in Shakespearean tragedies?
Martin Grandjean (2016)
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-
shakespearen-tragedies-heres-what-the-data-say

https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say

“Rush Hour” Solution
Unknown Source
Presented by Cinda Heeren, 2016

Wolfram|Alpha's "Personal Analytics“ for Facebook
Generated: April 2013 using Wade Fagen-Ulmschneider’s Profile Data

“Rule of 7”
Unknown Source
Presented by Cinda Heeren, 2016

This graph can be used to quickly calculate
whether a given number is divisible by 7.

1. Start at the circle node at the top.
2. For each digit d in the given number, follow
d blue (solid) edges in succession. As you
move from one digit to the next, follow 1 red
(dashed) edge.
3. If you end up back at the circle node, your
number is divisible by 7.

3703

Conflict-Free Final Exam Scheduling Graph
Unknown Source
Presented by Cinda Heeren, 2016

Class Hierarchy At University of
Illinois Urbana-Champaign
A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are
courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class_hi
erarchy_at_illinois/

http://waf.cs.illinois.edu/discovery/class_hierarchy_at_illinois/

MP Collaborations in CS 225
Unknown Source
Presented by Cinda Heeren, 2016

“Stanford Bunny”
Greg Turk and Mark Levoy (1994)

Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

Graph Vocabulary

G = (V, E)

|V| = n

|E| = m

G1

G2

G3

Incident Edges:
I(v) = { (x, v) in E }

Degree(v): |I|

Adjacent Vertices:
A(v) = { x : (x, v) in E }

Path(G2): Sequence of vertices
connected by edges

Cycle(G1): Path with a
common begin and end
vertex.

Simple Graph(G): A graph with
no self loops or multi-edges.

(2, 5)

Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2
G3

Subgraph(G):
G’ = (V’, E’):

V’ ∈ V, E’ ∈ E, and
(u, v) ∈ E à u ∈ V’, v ∈ V’

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

(2, 5)

Running times are often reported by n, the number of
vertices, but often depend on m, the number of edges.

How many edges? Minimum edges:
Not Connected:

Connected*:

Maximum edges:
Simple:

Not simple:

XU

V

W

Z

Y

a

c

b

e

d

f
g

h

Connected Graphs

