CS 225

Data Structures

April 5 – Disjoint Sets Finale + Graphs Wade Fagen-Ulmschneider, Craig Zilles

Disjoint Sets Find

```
1 int DisjointSets::find(int i) {
2   if ( arr_[i] < 0 ) { return i; }
3   else { return _find( arr_[i] ); }
4 }</pre>
```

```
void DisjointSets::unionBySize(int root1, int root2) {
 1
 2
     int newSize = arr [root1] + arr [root2];
 3
     // If arr [root1] is less than (more negative), it is the larger set;
 4
     // we union the smaller set, root2, with root1.
 5
 6
     if ( arr [root1] < arr [root2] ) {</pre>
 7
       arr [root2] = root1;
 8
       arr [root1] = newSize;
 9
      1
10
     // Otherwise, do the opposite:
11
12
     else {
13
       arr [root1] = root2;
14
       arr [root2] = newSize;
15
      1
16
```

Path Compression

Disjoint Sets Analysis

```
The iterated log function:
The number of times you can take a log of a number.
```

```
log^{*}(n) = 0, n \le 1
1 + log^{(log(n))}, n > 1
```

```
What is lg*(2<sup>65536</sup>)?
```

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart **unions** and path compression on **find**:

Any sequence of **m union** and **find** operations result in the worse case running time of O(______), where **n** is the number of items in the Disjoint Sets.

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

List

- Singly Linked List
- Doubly Linked List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

• Constant time access to any element, given an index a[k] is accessed in O(1) time, no matter how large the array grows

• Cache-optimized

Many modern systems cache or pre-fetch nearby memory values due the "Principle of Locality". Therefore, arrays often perform faster than lists in identical operations.

- Efficient general search structure Searches on the sort property run in O(lg(n)) with Binary Search
- Inefficient insert/remove

Elements must be inserted and removed at the location dictated by the sort property, resulting shifting the array in memory – an O(n) operation

- Constant time add/remove at the beginning/end Amortized O(1) insert and remove from the front and of the array <u>Idea:</u> Double on resize
- Inefficient global search structure With no sort property, all searches must iterate the entire array; O(n) time

- First In First Out (FIFO) ordering of data Maintains an arrival ordering of tasks, jobs, or data
- All ADT operations are constant time operations enqueue() and dequeue() both run in O(1) time

- Last In First Out (LIFO) ordering of data Maintains a "most recently added" list of data
- All ADT operations are constant time operations push() and pop() both run in O(1) time

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

List

- Doubly Linked List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

Graphs

- List
- Doubly Linked List
- Skip List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

The Internet 2003

The OPTE Project (2003) Map of the entire internet; nodes are routers; edges are connections.

HAMLET

TROILUS AND CRESSIDA

Who's the real main character in Shakespearean tragedies?

Martin Grandjean (2016) <u>https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-</u> <u>shakespearen-tragedies-heres-what-the-data-say</u>

"Rush Hour" Solution

Unknown Source Presented by Cinda Heeren, 2016

Wolfram | Alpha's "Personal Analytics" for Facebook *Generated: April 2013 using Wade Fagen-Ulmschneider's Profile Data*

This graph can be used to quickly calculate whether a given number is divisible by 7.

1. Start at the circle node at the top.

For each digit d in the given number, follow
 d blue (solid) edges in succession. As you
 move from one digit to the next, follow 1 red
 (dashed) edge.

3. If you end up back at the circle node, your number is divisible by 7.

3703

"Rule of 7" Unknown Source Presented by Cinda Heeren, 2016

Conflict-Free Final Exam Scheduling Graph

Unknown Source Presented by Cinda Heeren, 2016

Class Hierarchy At University of Illinois Urbana-Champaign

A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class hi erarchy_at_illinois/

MP Collaborations in CS 225

Unknown Source Presented by Cinda Heeren, 2016

Graphs

To study all of these structures:

- 1. A common vocabulary
- 2. Graph implementations
- 3. Graph traversals
- 4. Graph algorithms

HAMLET

Graph Vocabulary

Incident Edges:
 I(v) = { (x, v) in E }

Degree(v): |||

Adjacent Vertices: A(v) = { x : (x, v) in E }

Path(G₂): Sequence of vertices connected by edges

Cycle(G₁): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Graph Vocabulary

Subgraph(G): G' = (V', E'): $V' \in V, E' \in E, and$ $(u, v) \in E \rightarrow u \in V', v \in V'$

Complete subgraph(G) Connected subgraph(G) Connected component(G) Acyclic subgraph(G) Spanning tree(G) Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

How many edges? **Minimum edges:** Not Connected:

Connected*:

Maximum edges: Simple:

Not simple:

$$\sum_{v \in V} \deg(v) =$$

Connected Graphs