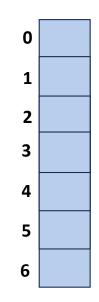

Data Structures

March 15 – Hash Table Collisions Wade Fagen-Ulmschneider, Craig Zilles

(Example of open hashing)

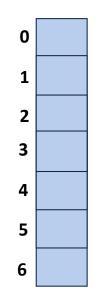
Collision Handling: Separate Chaining

S = { 16, 8, 4, 13, 29, 11, 22 } |S| = n h(k) = k % 7 |Array| = N



	Worst Case	SUHA
Insert		
Remove/Find		

(Example of closed hashing)


Collision Handling: Probe-based Hashing

S = { 16, 8, 4, 13, 29, 11, 22 } |S| = n h(k) = k % 7 |Array| = N

(Example of closed hashing)

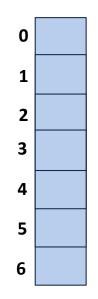
Collision Handling: Linear Probing S = { 16, 8, 4, 13, 29, 11, 22 } |S| = n |Array| = N

h(k) = k % 7

Try h(k) = (k + 0) % 7, if full... Try h(k) = (k + 1) % 7, if full... Try h(k) = (k + 2) % 7, if full... **Try** ...

	Worst Case	SUHA
Insert		
Remove/Find		

A Problem w/ Linear Probing


Primary clustering:

Description: Remedy:

Collision Handling: Double hashing **S** = { 16, 8, 4, 13, 29, 11, 22 } |S| = n

h(k) = k % 7

 $|\mathbf{A}| = \mathbf{N}$

Try
$$h(k) = (k + 0*h_2(k)) \% 7$$
, if full...
Try $h(k) = (k + 1*h_2(k)) \% 7$, if full...
Try $h(k) = (k + 2*h_2(k)) \% 7$, if full...
Try ...

 $h(k, i) = (h_1(k) + i^*h_2(k)) \% 7$

Running Times

The expected number of probes for find(key) under SUHA

Linear Probing:

- Successful: ½(1 + 1/(1-α))
- Unsuccessful: ½(1 + 1/(1-α))²

Double Hashing:

- Successful: 1/α * ln(1/(1-α))
- Unsuccessful: **1/(1-α)**

(Don't memorize these equations, no need.)

Instead, observe:

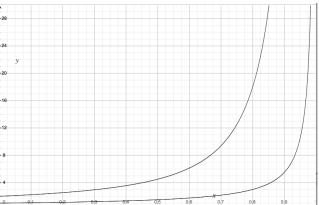
- As α increases:

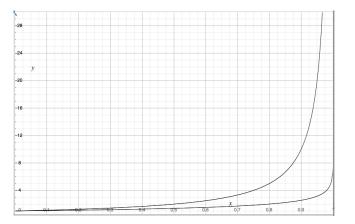
Separate Chaining:

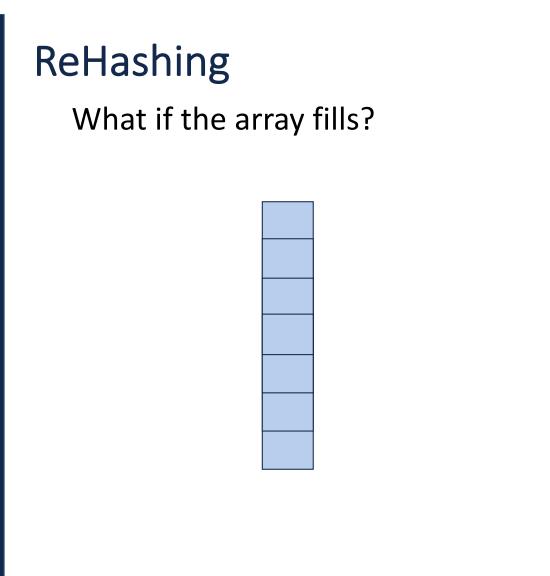
- Successful: $1 + \alpha/2$
- Unsuccessful: 1 + α

- If α is constant:

Running Times


The expected number of probes for find(key) under SUHA


Linear Probing:


- Successful: ½(1 + 1/(1-α))
- Unsuccessful: $\frac{1}{(1 \alpha)^2}$

- Successful: 1/α * ln(1/(1-α))
- Unsuccessful: 1/(1-α)

Which collision resolution strategy is better?

- Big Records:
- Structure Speed:

What structure do hash tables replace?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?