CS 225
Data Structures

March 1 – AVL Analysis
Wade Fagen-Ulmschneider
Insertion into an AVL Tree

Insert (pseudo code):
1: Insert at proper place
2: Check for imbalance
3: Rotate, if necessary
4: Update height

```
struct TreeNode {
    T key;
    unsigned height;
    TreeNode *left;
    TreeNode *right;
};
```
```
template <class T> void AVLTree<T>::_insert(const T & x, treeNode<T> * & t ) {
    if( t == NULL ) {
        t = new TreeNode<T>( x, 0, NULL, NULL);
    }

    else if( x < t->key ) {
        _insert( x, t->left );
        int balance = height(t->right) - height(t->left);
        int leftBalance = height(t->left->right) - height(t->left->left);
        if ( balance == -2 ) {
            if ( leftBalance == -1 ) { rotate_____________( t ); }
            else { rotate_____________( t ); }
        }
    }

    else if( x > t->key ) {
        _insert( x, t->right );
        int balance = height(t->right) - height(t->left);
        int rightBalance = height(t->right->right) - height(t->right->left);
        if( balance == 2 ) {
            if( rightBalance == 1 ) { rotate_____________( t ); }
            else { rotate_____________( t ); }
        }
    }

    t->height = 1 + max(height(t->left), height(t->right));
}
```
AVL Tree Analysis

We know: insert, remove and find runs in: __________.

We will argue that: h is __________.
AVL Tree Analysis

Definition of big-O:

...or, with pictures:
AVL Tree Analysis

- The height of the tree, $f(n)$, will always be less than $c \times g(n)$ for all values where $n > k$.

![Graph showing the height of an AVL tree as a function of the number of nodes.](image)
AVL Tree Analysis

\[h, \text{ height} \]

\[n, \text{ number of nodes} \]
AVL Tree Analysis

• The number of nodes in the tree, $f^{-1}(h)$, will always be greater than $c \times g^{-1}(h)$ for all values where $n > k$.
Plan of Action

Since our goal is to find the lower bound on n given h, we can begin by defining a function given h which describes the smallest number of nodes in an AVL tree of height h:
Simplify the Recurrence

\[N(h) = 1 + N(h - 1) + N(h - 2) \]
State a Theorem

Theorem: An AVL tree of height \(h \) has at least ___________\.

Proof:
I. Consider an AVL tree and let \(h \) denote its height.

II. Case: ______________

An AVL tree of height ____ has at least ____ nodes.
Prove a Theorem

III. Case: ______________

An AVL tree of height ____ has at least ____ nodes.
Prove a Theorem

IV. Case: ______________

By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height ____ has at least ____ nodes.
Prove a Theorem

V. Using a proof by induction, we have shown that:

...and inverting:
Summary of Balanced BST

Red-Black Trees
- Max height: $2 \times \lg(n)$
- Constant number of rotations on insert, remove, and find

AVL Trees
- Max height: $1.44 \times \lg(n)$
- Rotations:
Summary of Balanced BST

Pros:
- Running Time:
 - Improvement Over:

- Great for specific applications:
Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement: