Tree Terminology

• Find an **edge** that is not on the longest **path** in the tree. Give that edge a reasonable name.

• One of the vertices is called the **root** of the tree. Which one?

• Identify the vertices that have a **parent** but no **sibling**.

• How many parents does each vertex have?

• Which vertex has the fewest **children**?

• Which vertex has the most **ancestors**?

• Which vertex has the most **descendants**?

• List all the vertices in **b**’s left **subtree**.

• List all the **leaves** in the tree.
Binary Tree – Defined

A binary tree T is either:

•

OR

•

$\begin{align*}
C &\quad S &\quad X \\
&\quad A &\quad 2 &\quad S \\
&\quad 2 &\quad 5
\end{align*}$
Tree Property: height

height(T): length of the longest path from the root to a leaf

Given a binary tree T:

$height(T) = \boxed{2}$
Tree Property: full

A tree F is **full** if and only if:

1.
2.
Tree Property: perfect

A **perfect** tree P is defined in terms of the tree’s height.

Let P_h be a perfect tree of height h, and:

1.
2.

![Diagram of a perfect tree with nodes labeled C, S, X, A, 2, 2, 5]
Tree Property: complete

Conceptually: A perfect tree for every level except the last, where the last level is “pushed to the left”.

Slightly more formal: For all levels k in $[0, h-1]$, k has 2^k nodes. For level h, all nodes are “pushed to the left”.
Tree Property: complete

A complete tree C of height h, C_h:

1. $C_{-1} = \{\}$
2. C_h (where $h > 0$) = \{r, T_L, T_R\} and either:

 - T_L is __________ and T_R is __________

 OR

 - T_L is __________ and T_R is __________
Tree Property: complete

Is every full tree complete?

If every complete tree full?
Open Office Hours
Open Office Hours

CS 225 has **over 50 hours of open office hours each week**, **lots** of time to get help!
Open Office Hours

CS 225 has **over 50 hours of open office hours each week**, lots of time to get help!

1. Understand the problem, don’t just give up.
 - “I segfaulted” is not enough. *Where? Any idea why?*
Open Office Hours

CS 225 has **over 50 hours of open office hours each week**, lots of time to get help!

2. Your topic must be specific to one function, one test case, or one exam question.
 - Helps us know what to focus on before we see you!
 - Helps your peers to ensure all get questions answered!
Open Office Hours

CS 225 has **over 50 hours of open office hours each week**, lots of time to get help!

3. Get stuck, get help – not the other way around.
- If you immediately re-add yourself, you’re setting yourself up for failure.
Open Office Hours

CS 225 has **over 50 hours of open office hours each week**, lots of time to get help!

4. Be awesome.
Tree ADT
Tree ADT

insert, inserts an element to the tree.

remove, removes an element from the tree.

traverse,
#pragma once

template <class T>
class BinaryTree {
 public:
 /* ... */
 private:

};
Trees aren’t new:
Trees aren’t new:
How many NULLs?

Theorem: If there are \(n \) data items in our representation of a binary tree, then there are \(\) NULL pointers.
How many NULLs?

Base Cases:

n = 0:

n = 1:

n = 2:
How many NULLs?

Induction Hypothesis:
How many NULLs?

Consider an arbitrary tree T containing n data elements: