
CS 225
Data Structures

February 13 – Trees
Wade Fagen-Ulmschneider, Craig Zilles

Iterators
Suppose we want to look through every element in our
data structure:

8 2 5
Ø

Iterators encapsulated access to our data:

8 2 5
Ø

Cur. Location Cur. Data Next

ListNode *

index

(x, y, z)

Iterators
Every class that implements an iterator has two pieces:

1. [Implementing Class]:

Iterators
Every class that implements an iterator has two pieces:

2. [Implementing Class’ Iterator]:
• Must have the base class: std::iterator

• std::iterator requires us to minimally implement:

Iterators encapsulated access to our data:

8 2 5

Ø
::begin ::end

#include <list>
#include <string>
#include <iostream>

struct Animal {
std::string name, food;
bool big;
Animal(std::string name = "blob", std::string food = "you", bool big = true) :

name(name), food(food), big(big) { /* nothing */ }
};

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std::vector<Animal> zoo;

zoo.push_back(g);
zoo.push_back(p); // std::vector’s insertAtEnd
zoo.push_back(b);

for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); it++) {
std::cout << (*it).name << " " << (*it).food << std::endl;

}

return 0;
}

stlList.cpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include <list>
#include <string>
#include <iostream>

struct Animal {
std::string name, food;
bool big;
Animal(std::string name = "blob", std::string food = "you", bool big = true) :

name(name), food(food), big(big) { /* none */ }
};

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std::vector<Animal> zoo;

zoo.push_back(g);
zoo.push_back(p); // std::vector’s insertAtEnd
zoo.push_back(b);

for (const Animal & animal : zoo) {
std::cout << animal.name << " " << animal.food << std::endl;

}

return 0;
}

stlList.cpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

For Each and Iterators

for (const TYPE & variable : collection) {
// ...

}

std::vector<Animal> zoo;
…
for (const Animal & animal : zoo) {

std::cout << animal.name << " " << animal.food << std::endl;
}

14
…

20
21
22

For Each and Iterators

for (const TYPE & variable : collection) {
// ...

}

std::vector<Animal> zoo;
…
for (const Animal & animal : zoo) {

std::cout << animal.name << " " << animal.food << std::endl;
}

14
…

20
21
22

std::multimap<std::string, Animal> zoo;
…
for (const Animal & animal : zoo) {

std::cout << animal.name << " " << animal.food << std::endl;
}

…
…

20
21
22

Exam Programming A

• 2 hours
• 1 code reading question; 2 POTD-like coding questions
• Topics: see course website
• C++, List implementations (linked list, array), Stack/Queue ADT
• Labs: lab_intro, lab_debug, lab_memory, lab_inheritance
• MP1 and MP2

Be sure you know how to do POTDs from
EWS Linux machines !!!

Honors Section
CS 225 offers a one-credit add on honors section!

What is data science?
Algorithms

Data Structures

Visualizations

Python
JavaScript

d3.jspandas

Honors Section
Course Starts: Tomorrow, Thursday, February 14, 2019

Meets: Thursdays: 5:00 – 5:50pm, 1404 Siebel Center

If you are interested in adding the course, come to the first lecture!

Taught By: Wade Fagen-Ulmschneider (CS faculty)

Open to EVERYONE – not required to be part of an honors

program. Fulfills HCLA, James Scholar, etc.

Trees
“The most important non-linear data
structure in computer science.”
- Donald Knuth, The Art of Programming, Vol. 1

A tree is:

•

•

A Rooted Tree

“Mario Family Line”
<http://limitbreak.gameriot.com/blogs/
Caveat-Emptor/Mario-Family-Line>

http://limitbreak.gameriot.com/blogs/Caveat-Emptor/Mario-Family-Line

More Specific Trees
We’ll focus on binary trees:
• A binary tree is rooted – every node can be reached via

a path from the root a

b

d

g

h

j

c

e

i

f

More Specific Trees
We’ll focus on binary trees:
• A binary tree is acyclic – there are no cycles within the

graph a

b

d

g

h

j

c

e

i

f

More Specific Trees
We’ll focus on binary trees:
• A binary tree contains two or fewer children – where

one is the “left child” and
one is the “right child”:

a

b

d

g

h

j

c

e

i

f

Tree Terminology
• Find an edge that is not on the longest path in the tree. Give that edge a

reasonable name.
• One of the vertices is called the root of the tree. Which one?
• Identify the vertices that have a parent but no sibling.
• How many parents does each vertex have?
• Which vertex has the fewest children?
• Which vertex has the most ancestors?
• Which vertex has the most descendants?
• List all the vertices is b’s left subtree.
• List all the leaves in the tree.

b

d

g

h

j

c

e

i

f

a

Binary Tree – Defined
A binary tree T is either:

•

OR

•

A

XS

2

C

2

5

Tree Property: height
height(T): length of the longest path
from the root to a leaf

Given a binary tree T:

height(T) =

A

XS

2

C

2

5

Tree Property: full
A tree F is full if and only if:

1.

2. A

XS

2

C

2

5

Tree Property: perfect
A perfect tree P is:

1.

2. A

XS

2

C

2 5

Tree Property: complete
Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For any level k in
[0, h-1], k has 2k nodes. For level h, all
nodes are “pushed to the left”.

A

XS

2

C

2 5

Y Z

Tree Property: complete
A complete tree C of height h, Ch:
1. C-1 = {}
2. Ch (where h>0) = {r, TL, TR} and either:

TL is __________ and TR is _________

OR

TL is __________ and TR is _________

A

XS

2

C

2 5

Y Z

Tree Property: complete
Is every full tree complete?

If every complete tree full?
A

XS

2

C

2 5

Y Z

