From Friday:
- Graphs with a negative-weight cycle have no finite shortest path. *(We can always take the cycle one more time to get an even shorter path!)*
- Graphs with a negative-weight edge without a negative-weight cycle DO have a finite shortest path!
- Does Dijkstra’s algorithm find it?

Dijkstra: What if we have a minimum-weight edge, without having a negative-weight cycle?

…what assumption does Dijkstra’s algorithm make?

Floyd-Warshall Algorithm
Floyd-Warshall’s Algorithm is an alternative to Dijkstra in the presence of negative-weight edges (but not negative weight cycles).

Intuition:
Consider a graph G with vertices V numbered 1 through N.

Consider the function shortestPath(i, j, k) that returns the shortest possible path from i to j using only vertices from the set {1,2, ...,k}.

Clearly, shortestPath(i, j, N) returns _______________________

For each pair of vertices, the shortestPath(i, j, k) could be either
(1) a path that doesn’t go through k (only uses vertices in the set {1, ..., k-1}).
(2) a path that does go through k (from i to k and then from k to j, both only using intermediate vertices in {1, ..., k-1}.

If w(i,j) is the weight of the edge between vertices i and j, we can recursively define shortestPath (i,j,k) as:

```java
// base case
shortestPath(i, j, 0) =
// recursive
shortestPath(i, j, k) = min(
```
Algorithm Design:

- **Goal:** Find the shortest path from vertex \(u \) to \(v \).
- **Setup:** Create an \(n \times n \) matrix that maintains the best known path between every pair of vertices:
 - Initialize \((u, u)\) to 0.
 - Initialize all edges present on the graph to their edge weight.
 - Initialize all other edges to +infinity.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For every vertex \(k \), consider which of the following are shorter:
 - \(\text{path}(u, v) \) - or -
 - \(\text{path}(u, k) + \text{path}(k, v) \)

Running Time:

<table>
<thead>
<tr>
<th>Pseudocode for Floyd-Warshall’s Algorithm</th>
</tr>
</thead>
</table>
| 1. FloydWarshall(G):

 2. Input: G, Graph;

 3. Output: \(d \), an adjacency matrix of distances between all vertex pairs

 4. Let \(d \) be an adj. matrix (2d array) initialized to +inf

 5. foreach (Vertex \(v \) : G):

 6. \(d[v][v] = 0 \)

 7. foreach (Edge \((u, v) \) : G):

 8. \(d[u][v] = \text{cost}(u, v) \)

 9. foreach (Vertex \(u \) : G):

 10. foreach (Vertex \(v \) : G):

 11. foreach (Vertex \(k \) : G):

 12. if \(d[u, v] > d[u, k] + d[k, v] \):

 13. \(d[u, v] = d[u, k] + d[k, v] \)

 14. return \(d \)

Big Idea: ________________

- Store intermediate results to improve build towards an optimal solution.
- Example application of memorization and **dynamic programming (DP)** – more in CS 374!

Overview of Graphs:

Implementations: Edge List, Adjacency Matrix, Adjacency List

Traversals: Breadth First, Depth First

Minimum Spanning Tree (MST): Kruskal’s, Prim’s Algorithm

Shortest Path:
- Dijkstra’s Algorithm (**Single Source**)
- Floyd-Warshall’s Algorithm (**All Pairs**)

Maximum Flow
- Ford-Fulkerson (DFS paths) Algorithm
- Edmonds-Karp (BFS paths) Algorithm

End of Semester :(?

“Pre-Final” Grade Update

- As soon as possible after the MP7 deadline, we’ll provide a “Pre-Final” grade update in Compass 2g with all grades except for your final exam.

End of Semester Grade Review

- Did we miss something that impacts your final grade? I want to be absolutely sure you get the grade you earned!
- After final grades are posted, I will provide a Google Sheet that allows you to submit a **Grade Review** if you believe the grade review will change your final letter grade.
 - You will have the chance to justify why you received an incorrect grade and how it impacts your letter grade in the course.
 - Instructions on Piazza at the same time as that the final grades are posted.

CS 225 – Things To Be Doing:

1. MP7 due tonight (April 29)
2. **In-lecture review w/ TAs** on Wednesday, May 1st
3. Final Exam starts Thursday, May 2nd