5 April 22, 2019 · Fagen-Ulmschneider, Zilles

A **Minimum Spanning Tree** is a spanning tree with the **minimal total edge weights** among all spanning trees.

- Every edge must have a weight
 - The weights are unconstrained, except they must be additive (*eg: can be negative, can be non-integers*)
- Output of a MST algorithm produces G':
 - G' is a spanning graph of G
 - G' is a tree

G' has a minimal total weight among all spanning trees. *There may be multiple minimum spanning trees, but they have equal total weight!*

• We covered the first classical algorithm (Kruskal) already!

Partition Property

Consider an arbitrary partition of the vertices on **G** into two subsets **U** and **V**. V

B

2

E

2

7

Let **e** be an edge of minimum weight across the partition.

Then **e** is part of some minimum spanning tree.

Proof in CS 374!

	Pseudocode for Prim's MST Algorithm					
1	PrimMST(G, s):					
2	Input: G, Graph;					
3	s, vertex in G, starting vertex of algorithm					
4	Output: T, a minimum spanning tree (MST) of G					
5						
6	foreach (Vertex v : G):					
7	d[v] = +inf					
8	p[v] = NULL					
9	d[s] = 0					
10						
11	PriorityQueue Q // min distance, defined by d[v]					
12	Q.buildHeap(G.vertices())					
13	Graph T // "labeled set"					
14						
15	repeat n times:					
16	Vertex m = Q.removeMin()					
17	T.add(m)					
18	foreach (Vertex v : neighbors of m not in T):					
19	if $cost(v, m) < d[v]$:					
20	d[v] = cost(v, m)					
21	p[v] = m					
22						
23	return T					

Prim's MST Algorithm

	Adj. Matrix	Adj. List
Неар		
Unsorted Array		

2 B 15 C A 5 13 11 16 9 12 F

Running Time of MST Algorithms

Kruskal's MST	Prim's MST

Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between **n** and **m**?

Shortest Path Home:

Dijkstra's Algorithm (Single Source Shortest Path)

Dijkstra's Algorithm Overview:

- The overall logic is the same as Prim's Algorithm
- We will modify the code in only two places both involving the update to the distance metric.
- The result is a directed acyclic graph or DAG

CS 225 – Things To Be Doing:

- 1. MP7 Live Slightly different structure: Hard Deadline on Monday, April. 22 (TONIGHT) for Part 1
- **2.** lab_finale in lab this week!
- 3. Daily POTDs are ongoing for +1 point /problem

Kruskal's MST	Prim's MST

Q: Suppose we built a new heap that optimized the decrease-key operation, where decreasing the value of a key in a heap updates the heap in amortized constant time, or $O(1)^*$. How does that change Prim's Algorithm runtime?

Final big-O Running Times of classical MST algorithms:

Kruskal's MST	Prim's MST