A Minimum Spanning Tree is a spanning tree with the minimal total edge weights among all spanning trees.
- Every edge must have a weight
 - The weights are unconstrained, except they must be additive (*eg: can be negative, can be non-integers*)
- Output of a MST algorithm produces G':
 - G' is a spanning graph of G
 - G' is a tree

G' has a minimal total weight among all spanning trees. *There may be multiple minimum spanning trees, but they have equal total weight!*
- We covered the first classical algorithm (Kruskal) already!

Partition Property
Consider an arbitrary partition of the vertices on G into two subsets U and V.

Let e be an edge of minimum weight across the partition.

Then e is part of some minimum spanning tree.

Proof in CS 374!

Pseudocode for Prim’s MST Algorithm

```plaintext
PrimMST(G, s):
  Input: G, Graph; s, vertex in G, starting vertex of algorithm
  Output: T, a minimum spanning tree (MST) of G
  foreach (Vertex v : G):
    d[v] = +inf
    p[v] = NULL
  d[s] = 0
  PriorityQueue Q // min distance, defined by d[v]
  Q.buildHeap(G.vertices())
  Graph T // "labeled set"
  repeat n times:
    Vertex m = Q.removeMin()
    T.add(m)
    foreach (Vertex v : neighbors of m not in T):
      if cost(v, m) < d[v]:
        d[v] = cost(v, m)
        p[v] = m
  return T
```

<table>
<thead>
<tr>
<th>Adj. Matrix</th>
<th>Adj. List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td></td>
</tr>
<tr>
<td>Unsorted Array</td>
<td></td>
</tr>
</tbody>
</table>
Running Time of MST Algorithms

<table>
<thead>
<tr>
<th>Kruskal’s MST</th>
<th>Prim’s MST</th>
</tr>
</thead>
</table>

Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between \(n \) and \(m \)?

<table>
<thead>
<tr>
<th>Kruskal’s MST</th>
<th>Prim’s MST</th>
</tr>
</thead>
</table>

Q: Suppose we built a new heap that optimized the decrease-key operation, where decreasing the value of a key in a heap updates the heap in amortized constant time, or \(O(1)^* \). How does that change Prim’s Algorithm runtime?

Final big-O Running Times of classical MST algorithms:

<table>
<thead>
<tr>
<th>Kruskal’s MST</th>
<th>Prim’s MST</th>
</tr>
</thead>
</table>

Shortest Path Home:

Dijkstra’s Algorithm (Single Source Shortest Path)

Dijkstra’s Algorithm Overview:
- The overall logic is the same as Prim’s Algorithm
- We will modify the code in only two places – both involving the update to the distance metric.
- The result is a directed acyclic graph or DAG

CS 225 – Things To Be Doing:

1. MP7 Live – Slightly different structure: **Hard Deadline** on Monday, April 22 (TONIGHT) for Part 1
2. lab_finale in lab this week!
3. Daily POTDs are ongoing for +1 point/problem