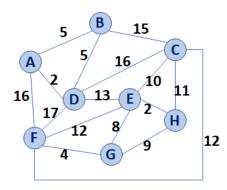


#38: MSTs: Kruskal + Prim's Algorithm

2 5 April 19, 2019 · Fagen-Ulmschneider, Zilles

Kruskal's Algorithm



(A,	D)
(E,	H)
(F,	G)
(A,	, B)
(В,	D)
(G	, E)
(G,	, H)
(E,	C)
(C,	Н)
(E,	, F)
(F,	C)
(D,	, E)
(В,	C)
(C,	D)
(A)	, F)
(D,	, F)

	Pseudocode for Kruskal's MST Algorithm
1	KruskalMST(G):
2	DisjointSets forest
3	foreach (Vertex v : G):
4	forest.makeSet(v)
5	
6	PriorityQueue Q // min edge weight
7	foreach (Edge e : G):
8	Q.insert(e)
9	
10	Graph $T = (V, \{\})$
11	
12	while $ T.edges() < n-1$:
13	Vertex $(u, v) = Q.removeMin()$
14	<pre>if forest.find(u) == forest.find(v):</pre>
15	T.addEdge(u, v)
16	<pre>forest.union(forest.find(u),</pre>
17	<pre>forest.find(v))</pre>
18	
19	return T

Kruskal's Running Time Analysis

We have multiple choices on which underlying data structure to use to build the Priority Queue used in Kruskal's Algorithm:

Priority Queue Implementations:	Неар	Sorted Array
Building		
:6-8		
Each removeMin		
:13		

Based on our algorithm choice:

Priority Queue Implementation:	Total Running Time
Неар	
Sorted Array	

Reflections

Why would we prefer a Heap?

Why would be prefer a Sorted Array?

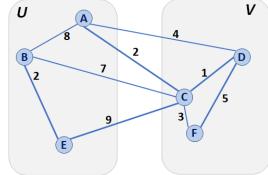
Partition Property

Consider an arbitrary partition of the vertices on **G** into two subsets **U** and **V**.

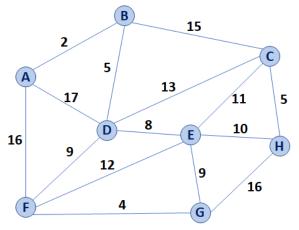
Let **e** be an edge of minimum weight across the partition.

Then **e** is part of some minimum spanning tree.

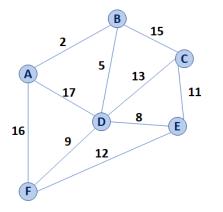
Proof in CS 374!



Partition Property Algorithm



Prim's Minimum Spanning Tree Algorithm



	Adj. Matrix	Adj. List
Неар		
Unsorted Array		

	Pseudocode for Prim's MST Algorithm	
1	PrimMST(G, s):	
2	Input: G, Graph;	
3	s, vertex in G, starting vertex of algorithm	
4	Output: T, a minimum spanning tree (MST) of G	
5		
6	foreach (Vertex v : G):	
7	d[v] = +inf	
8	p[v] = NULL	
9	d[s] = 0	
10		
11	PriorityQueue Q $//$ min distance, defined by d[v]	
12	Q.buildHeap(G.vertices())	
13	Graph T // "labeled set"	
14		
15	repeat n times:	
16	Vertex m = Q.removeMin()	
17	T.add(m)	
18	foreach (Vertex v : neighbors of m not in T):	
19	if $cost(v, m) < d[v]$:	
20	d[v] = cost(v, m)	
21	p[v] = m	
22		
23	return T	

Running Time of MST Algorithms

Kruskal's Algorithm:

Prim's Algorithm:

Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between ${\bf n}$ and ${\bf m}?$

CS 225 – Things To Be Doing:	
1.	Programming Exam C through April 21th
2.	MP7 Released – Slightly different structure: Hard Deadline on Monday, April 22nd for Part 1
	lab_ml in lab this week!
4.	Daily POTDs are ongoing for +1 point /problem