

#34: Graph Implementation

April 10 2019 · Fagen-Ulmschneider, Zilles

Graph Implementation #1: Edge List

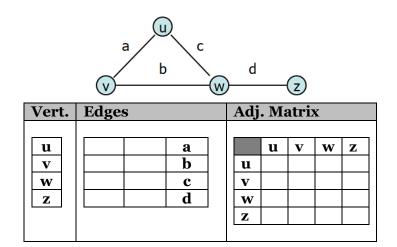
Data Structures:

Vertex Collection:

Edge Collection:

Operations on an Edge List implementation:

insertVertex(K key):What needs to be done?


removeVertex(Vertex v): - What needs to be done?

incidentEdges(Vertex v):
 - What needs to be done?

areAdjacent(Vertex v1, Vertex v2): - Can this be faster than G.incidentEdges (v1).contains (v2)?

insertEdge(Vertex v1, Vertex v2, K key):
 - What needs to be done?

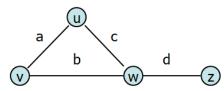
Graph Implementation #2: Adjacency Matrix

Data Structures:

Operations on an Adjacency Matrix implementation:

insertVertex(K key):
- What needs to be done?

removeVertex(Vertex v): - What needs to be done?


incidentEdges(Vertex v):
 - What needs to be done?

areAdjacent(Vertex v1, Vertex v2):

- Can this be faster than G.incidentEdges (v1).contains (v2)?

insertEdge(Vertex v1, Vertex v2, K key):
- What needs to be done?

Graph Implementation #3: Adjacency List

Vertex List	Edges
u	a
v	b
w	c
z	d

Operations on an Adjacency Matrix implementation: insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

insertEdge(Vertex v1, Vertex v2, K key):

Running Times of Classical Graph Implementations

	Edge List	Adj. Matrix	Adj. List
Space	n+m	n²	n+m
insertVertex	1	n	1
removeVertex	m	n	deg(v)
insertEdge	1	1	1
removeEdge	1	1	1
incidentEdges	m	n	deg(v)
areAdjacent	m	1	min(deg(v), deg(w))

Q: If we consider implementations of simple, connected graphs, what relationship between n and m?

- On connected graphs, is there one algorithm that underperforms the other two implementations?

Q: Is there clearly a single best implementation?

- Optimized for fast construction:

- Optimized for areAdjacent operations:

CS 225 – Things To Be Doing:

- 1. Optional Exam: Thursday, April 11 Sunday, April 14
- **2.** lab_dict released this week; due on Sunday.
- 3. MP6 EC+5 due tonight; final due date on Monday, April. 15
- 4. Very special POTD today!