$\mathrm{CS}_{2}{ }^{2}$
 \#32: Disjoint Sets Finale + Graphs Intro
 April 5, $2019 \cdot$ Fagen-Ulmschneider, Zilles

Smart Union Options:

- Union by Height (root :=-h-1)
- Union by Size (root :=-n)
- Union by Rank (root := \#union ops)

In all smart unions:
....height of UpTree: \qquad .

How do we improve this?


```
DisjointSets.cpp (partial)
int DisjointSets::find(int i) {
    if (arr_[i] < 0 ) { return i; }
    else { return _find( arr_[i] ); }
```

```
            DisjointSets.cpp (partial)
void DisjointSets::unionBySize(int root1, int root2) {
    int newSize = arr [root1] + arr [root2];
    // If arr_[root1] is less than (more negative), it is the
    // larger set; we union the smaller set, root2, with root1.
    if ( arr_[root1] < arr_[root2] ) {
        arr_[root2] = root1;
        arr_[root1] = newSize
    }
    // Otherwise, do the opposite:
    else {
        arr [root1] = root2
        arr_[root2] = newSize;
    }
}
```


Running Time:

- Worst case running time of find(k):
- Worst case running time of union(r1, r2), given roots:
- New function: "Iterated Log":

```
log*(n) :=
```

- Overall running time:
- A total of \mathbf{m} union/find operation runs in:

A Review of Major Data Structures so Far

Array-based	List/Pointer-based
- Sorted Array	- Singly Linked List
- Unsorted Array	- Doubly Linked List
- Stacks	- Trees
- Queues	- BTree
- Hashing	- Binary Tree
- Heaps	- Huffman Encoding
- Priority Queues	- kd-Tree
- UpTrees	- AVL Tree
- Disjoint Sets	

An Introduction to Graphs

HAMLET
TROILUS AND CRESSIDA

Motivation:

Graphs are awesome data structures that allow us to represent an enormous range of problems. To study these problems, we need:

1. A common vocabulary to talk about graphs
2. Implementation(s) of a graph
3. Traversals on graphs
4. Algorithms on graphs

Graph Vocabulary

Consider a graph \mathbf{G} with vertices \mathbf{V} and edges $\mathbf{E}, \mathbf{G}=(\mathbf{V}, \mathbf{E})$.

> Incident Edges:
> $\mathbf{I}(\mathbf{v})=\{(\mathbf{x}, \mathbf{v}) \mathbf{i n} \mathbf{E}\}$

Degree(v): |I|
Adjacent Vertices: $\mathbf{A}(\mathrm{v})=\{\mathbf{x}:(\mathrm{x}, \mathrm{v})$ in E$\}$

Path $\left(\mathrm{G}_{2}\right)$: Sequence of vertices connected by edges

Cycle $\left(\mathrm{G}_{1}\right)$: Path with a common begin and end vertex.
Simple Graph(G): A graph with no self loops or multi-edges.
Subgraph(G): $\mathbf{G}^{\prime}=\left(\mathbf{V}^{\prime}, \mathbf{E}^{\prime}\right)$:
$V^{\prime} \in V, E^{\prime} \in E$, and $(u, v) \in E \rightarrow u \in V^{\prime}, v \in V^{\prime}$

CS 225 - Things To Be Doing:

1. Theory Exam 3 is ongoing!
2. lab_heap due Sunday, April $7^{\text {th }}$
3. MP6 released; Extra Credit +7 deadline April $8^{\text {th }}$
4. Daily POTDs are ongoing!
