

Goal: Build a tree that uses \qquad /node!
...optimize the algorithm for your platform!

A BTree of order \mathbf{m} is an m-way tree where:

1. All keys within a node are ordered.

BTree Insert, using m=5
...when a BTree node reaches \mathbf{m} keys:

BTree Insert, m=3:

Great interactive visualization of BTrees:

https://www.cs.usfca.edu/~galles/visualization/BTree.html

BTree Properties

For a BTree of order \mathbf{m} :

1. All keys within a node are ordered.
2. All leaves contain no more than $\mathbf{m - 1}$ keys.
3. All internal nodes have exactly one more child than keys.
4. Root nodes can be a leaf or have $[\mathbf{2}, \mathbf{m}]$ children.
5. All non-root, internal nodes have $[\mathbf{c e i l}(\mathbf{m} / \mathbf{2}), \mathbf{m}]$ children.
6. All leaves are on the same level.

Example BTree

What properties do we know about this BTree?

BTree Search


```
        BTree.hpp
```

```
bool Btree<K, V>::_exists(BTreeNode & node, const K & key) {
```

bool Btree<K, V>::_exists(BTreeNode \& node, const K \& key) {
unsigned i;
unsigned i;
for (i=0; i < node.keys_ct_ \&\& key < node.keys_[i]; i++) { }
for (i=0; i < node.keys_ct_ \&\& key < node.keys_[i]; i++) { }
if (i < node.keys_ct_ \&\& key == node.keys_[i]) {
if (i < node.keys_ct_ \&\& key == node.keys_[i]) {
return true;
return true;
}
}
if (node.isLeaf()) {
if (node.isLeaf()) {
return false;
return false;
} else {
} else {
BTreeNode nextChild = node. fetchChild(i);
BTreeNode nextChild = node. fetchChild(i);
return _exists (nextChild, kēy);
return _exists (nextChild, kēy);
}
}
}

```

\section*{BTree Analysis}

The height of the BTree determines maximum number of _ possible in search data.
...and the height of our structure:

Therefore, the number of seeks is no more than: \(\qquad\) -.
...suppose we want to prove this!

\section*{BTree Proof \#1}

In our AVL Analysis, we saw finding an upper bound on the height ( \(\mathbf{h}\) given \(\mathbf{n}\), aka \(\mathbf{h}=\mathbf{f}(\mathbf{n})\) ) is the same as finding a lower bound on the keys ( \(\mathbf{n}\) given \(\mathbf{h}\), aka \(\mathbf{f}^{\mathbf{1}}(\mathbf{h})\) ).

Goal: We want to find a relationship for BTrees between the number of keys (n) and the height (h).

\section*{BTree Strategy:}
1. Define a function that counts the minimum number of nodes in a BTree of a given order.
a. Account for the minimum number of keys per node.
2. Proving a minimum number of nodes provides us with an upper-bound for the maximum possible height.

\section*{Proof:}

1a. The minimum number of nodes for a BTree of order \(\mathbf{m}\) at each level is as follows:
```

root:
level 1:
level 2:
level 3:
level h:

```

1b. The minimum total number of nodes is the sum of all levels:
2. The minimum number of keys:
3. Finally, we show an upper-bound on height:

\section*{CS 225 - Things To Be Doing:}
1. Programming Exam B starts on Tuesday
2. MP4 is due tonight by 11:59pm; MP5 released Tuesday
3. lab_btree released on Wednesday
4. Daily POTDs are ongoing!```

