AVL – Proof of Runtime
On Friday, we proved an upper-bound on the height of an AVL tree is $2^*\log(n)$ or $O(\log(n))$.

<table>
<thead>
<tr>
<th>AVL Trees</th>
<th>Red-Black Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced BST</td>
<td>Balanced BST</td>
</tr>
<tr>
<td>Max height: 1.44 * $\log(n)$</td>
<td>Functionally equivalent to AVL trees; all key operations runs in $O(h)$ time.</td>
</tr>
<tr>
<td>Q: Why is our proof $2^*\log(n)$?</td>
<td>Max height: 2 * $\log(n)$</td>
</tr>
<tr>
<td>Rotations:</td>
<td>Rotations:</td>
</tr>
<tr>
<td>- find:</td>
<td>- find:</td>
</tr>
<tr>
<td>- insert:</td>
<td>- insert:</td>
</tr>
<tr>
<td>- remove:</td>
<td>- remove:</td>
</tr>
</tbody>
</table>

In CS 225, we learned **AVL trees** because they’re intuitive and I’m certain we could have derived them ourselves given enough time. A red-black tree is simply another form of a balanced BST that is also commonly used.

Summary of Balanced BSTs: *(Includes both AVL and Red-Black Trees)*

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using a Red-Black Tree in C++

C++ provides us a balanced BST as part of the standard library:

```cpp
std::map<K, V> map;
```

The map implements a dictionary ADT. Primary means of access is through the overloaded `operator[]`:

```cpp
V & std::map<K, V>::operator[]( const K & )
```

This function can be used for both insert and find!

Removing an element:

```cpp
void std::map<K, V>::erase( const K & );
```

Range-based searching:

```cpp
iterator std::map<K, V>::lower_bound( const K & );
iterator std::map<K, V>::upper_bound( const K & );
```

Iterators and MP4

Three weeks ago, you saw that you can use an iterator to loop through data:

```cpp
DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
    std::cout << (*it) << std::endl;
}
```

You will use iterators extensively in MP4, creating them in Part 1 and then utilizing them in Part 2. Given the iterator, you can use the for-each syntax available to you in C++:

```cpp
DFS dfs(...);
for ( const Point & p : dfs ) {
    std::cout << p << std::endl;
}
```

The exact code you might use will have a generic `ImageTraversal`:

```cpp
ImageTraversal traversal = /* ... */;
for ( const Point & p : traversal ) {
    std::cout << p << std::endl;
}
```
Running Time of Every Data Structure So Far:

<table>
<thead>
<tr>
<th></th>
<th>Unsorted Array</th>
<th>Sorted Array</th>
<th>Unsorted List</th>
<th>Sorted List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traverse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Range-based Searches:

Q: Consider points in 1D: \(p = \{ p_1, p_2, \ldots, p_n \} \).

...what points fall in [11, 42]?

Tree Construction:

Extending to k-dimensions:

Consider points in 2D: \(p = \{ p_1, p_2, \ldots, p_n \} \):

...what points are inside a range (rectangle)?
...what is the nearest point to a query point \(q \)?

Tree Construction:

CS 225 – Things To Be Doing:

1. Programming Exam B starts in 10 days *(grab your time slot!)*
2. MP4 extra credit +7 due tonight
3. `lab_avl` released this week; details on Wednesday
4. Daily POTDs are ongoing!