Welcome to Lab Inheritance!
Course Website: https://courses.engr.illinois.edu/cs225/sp2019/labs

Overview
In this week’s lab, you will gain experience with the concept of inheritance. Inheritance in OOP is used when you want to extend a base class to build other derived classes. Inheritance enables us to write more flexible code with minimum code redundancy.

Derived From Base
A derived class is an extension of the base class. The derived class inherits the member functions and member variables of the base class. You are allowed to override functions given by the base class in the derived class. The virtual keyword signals that if a derived version of the function exists in the class; then it should be executed first. Pure virtual functions in the base class must have an implementation in the derived class.

Exercise 1: You are given the class Building as a base class for class Apartment. Complete the implementation of Apartment by filling in the .h and .cpp files. Pay close attention to virtual functions!

```cpp
#pragma once

class Building{
public:
    Building(double ar, string add);
    virtual void setName(string n)=0; //pure virtual function
    virtual string getName();
private:
    double area_; //YOUR CODE HERE
    string address_; //YOUR CODE HERE
};

#include "Building.h"

Building::Building(double ar, string add)
    : Building(ar, add) //YOUR CODE HERE
{
    name_ = "SIEBEL";
    capacity_ = c; //YOUR CODE HERE
}

void Building::setName(string n){
    name_ = n;
}

string Building::getName(){
    return "SIEBEL";
}

```
Polymorphism

One of the key features of class inheritance is that a pointer to a derived class is type-compatible with a pointer to its base class. However, the opposite is not true; while an instance of a derived class can be “polymorphed” into its base class, an instance of the base class cannot be “polymorphed” into an instance of its derived classes.

Exercise 2.1: Which building initialization(s) will cause an error?

```
1 2 3 4
```

Exercise 2.2: What would be printed in lines 11 through 14?

```
ISR
Busey Evans
```

```
ISR
```

<table>
<thead>
<tr>
<th>main.cpp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 int main() {</td>
</tr>
<tr>
<td>2 Building* building1 = new Building(300, "306 Wright");</td>
</tr>
<tr>
<td>3 Building* building2 = new Apartment(200, "1111 Nevada");</td>
</tr>
<tr>
<td>4 Apartment* building3 = new Apartment(250, "918 Illinois");</td>
</tr>
<tr>
<td>5 Goodwin");</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10 };</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13 }</td>
</tr>
<tr>
<td>14 delete a;</td>
</tr>
<tr>
<td>15 return 0;</td>
</tr>
<tr>
<td>16 }</td>
</tr>
</tbody>
</table>
```

Virtual Destructors

When we have a base class pointer pointing to a derived class object, the base class destructor is used to free the memory of the derived class object. A memory leak may occur if the derived class has data allocated on the heap using a member variable that was not given by the base class. To fix the issue, the base class’s destructor should be a virtual destructor.

Exercise 3.1: What will be printed out when main() is run?

```
Ctor A Ctor B Ctor A Ctor B
Dtor A Dtor B Dtor A
```

Exercise 3.2: How would you correct this code so that lines 5 and 6 in main correctly deallocate memory? What will be printed out then?

```
Dtor B Dtor A
Dtor B
Dtor A
```

In the programming part of this lab, you will:
- Explore the classes: Drawable, Shape, Circle, Triangle, and Rectangle, and discover how each fits in the inheritance hierarchy.
- Produce drawings of Truck and Flower

As your TA and CAs, we’re here to help with your programming for the rest of this lab section! ☺