Graph ADT

Data:
- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:
- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);
Edge List

Vertex List
- u
- v
- w
- z

Edge List
- u v a
- v w b
- u w c
- w z d

Key Ideas:
- Given a vertex, \(O(1) \) lookup in vertex list
 - Implement w/ a hash table, etc
- All basic ADT operations runs in \(O(m) \) time
Adjacency Matrix

Key Ideas:
- Given a vertex, O(1) lookup in vertex list
- Given a pair of vertices (an edge), O(1) lookup in the matrix
- Undirected graphs can use an upper triangular matrix
Adjacency List

- v
 - a
 - b
 - w
 - c
 - d
 - z
 - d=2
 - w
 - d=3
 - z
 - d=1

- u
 - a
 - c

- d

- u
 - v
 - a
 - w
 - b
 - c
 - z
 - d
Key Ideas:
- O(1) lookup in vertex list
- Vertex list contains a doubly-linked adjacency list
 - O(1) access to the adjacent vertex’s node in adjacency list (via the edge list)
- Vertex list maintains a count of incident edges, or $\text{deg}(v)$
- Many operations run in $O(\text{deg}(v))$, and $\text{deg}(v) \leq n-1$, $O(n)$.

Adjacency List

Key Ideas:
- O(1) lookup in vertex list
- Vertex list contains a doubly-linked adjacency list
- O(1) access to the adjacent vertex’s node in adjacency list (via the edge list)
- Vertex list maintains a count of incident edges, or $\text{deg}(v)$
- Many operations run in $O(\text{deg}(v))$, and $\text{deg}(v) \leq n-1$, $O(n)$.

Adjacency List

- **O(1) lookup in vertex list**
- **Vertex list contains a doubly-linked adjacency list**
- **O(1) access to the adjacent vertex’s node in adjacency list (via the edge list)**
- **Vertex list maintains a count of incident edges, or $\text{deg}(v)$**
- **Many operations run in $O(\text{deg}(v))$, and $\text{deg}(v) \leq n-1$, $O(n)$**.
<table>
<thead>
<tr>
<th>Expressed as big-O</th>
<th>Edge List</th>
<th>Adjacency Matrix</th>
<th>Adjacency List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>n+m</td>
<td>N^2</td>
<td>n+m</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>1</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>m</td>
<td>n</td>
<td>deg(v)</td>
</tr>
<tr>
<td>insertEdge(v, w, k)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>removeEdge(v, w)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>m</td>
<td>n</td>
<td>deg(v)</td>
</tr>
<tr>
<td>areAdjacent(v, w)</td>
<td>m</td>
<td>1</td>
<td>min(deg(v), deg(w))</td>
</tr>
</tbody>
</table>
Traversal:

Objective: Visit every vertex and every edge in the graph.

Purpose: Search for interesting sub-structures in the graph.

We’ve seen traversal beforebut it’s different:

- Ordered
- Obvious Start

[Diagram of a tree structure]

[Diagram of a more complex graph structure]
Traversal: BFS
Traversal: BFS

<table>
<thead>
<tr>
<th>d</th>
<th>p</th>
<th>Adjacent Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>ACBD</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>ABCE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>BCDEF</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>ACFH</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>BCG</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>CDFG</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>EFGH</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>DFG</td>
</tr>
</tbody>
</table>
BFS(G):

Input: Graph, G
Output: A labeling of the edges on G as discovery and cross edges

foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):

 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)

while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
BFS Analysis

Q: Does our implementation handle disjoint graphs? If so, what code handles this?
 - *How do we use this to count components?*

Q: Does our implementation detect a cycle?
 - *How do we update our code to detect a cycle?*

Q: What is the running time?
Running time of BFS

While-loop at : 19?

For-loop at : 21?
BFS(G):
 Input: Graph, G
 Output: A labeling of the edges on G as discovery and cross edges

 foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
 foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)
 while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
BFS Observations

Q: What is a shortest path from A to H?

Q: What is a shortest path from E to H?

Q: How does a cross edge relate to d?

Q: What structure is made from discovery edges?
BFS Observations

Obs. 1: Traversals can be used to count components.

Obs. 2: Traversals can be used to detect cycles.

Obs. 3: In BFS, \(d \) provides the shortest distance to every vertex.

Obs. 4: In BFS, the endpoints of a cross edge never differ in distance, \(d \), by more than 1:

\[|d(u) - d(v)| = 1 \]
Traversal: DFS
BFS(G):
Input: Graph, G
Output: A labeling of the edges on
G as discovery and cross edges

foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)
while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
DFS(G):
Input: Graph, G
Output: A labeling of the edges on G as discovery and back edges

foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 DFS(G, v)

DFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
 v = q.dequeue()

 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 DFS(G, w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, BACK)
Running time of DFS

Labeling:
• Vertex:
 • Edge:

Queries:
• Vertex:
 • Edge: