CS 225
Data Structures

April 9 – Graphs Intro
Wade Fagen-Ulmschneider
Disjoint Sets Analysis

The *iterated log* function:

The number of times you can take a log of a number.

\[
\log^*(n) =
\begin{align*}
0 & , \quad n \leq 1 \\
1 + \log^*(\log(n)) & , \quad n > 1
\end{align*}
\]

What is \(\log^*(2^{65536}) \)?
Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and path compression on find:

Any sequence of \(m \) union and find operations result in the worse case running time of \(O(_________________) \), where \(n \) is the number of items in the Disjoint Sets.
In Review: Data Structures

<table>
<thead>
<tr>
<th>Array</th>
<th>List</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sorted Array</td>
<td>- Doubly Linked List</td>
</tr>
<tr>
<td>- Unsorted Array</td>
<td>- Skip List</td>
</tr>
<tr>
<td>- Stacks</td>
<td>- Trees</td>
</tr>
<tr>
<td>- Queues</td>
<td>- BTree</td>
</tr>
<tr>
<td>- Hashing</td>
<td>- Binary Tree</td>
</tr>
<tr>
<td>- Heaps</td>
<td>- Huffman Encoding</td>
</tr>
<tr>
<td>- Priority Queues</td>
<td>- kd-Tree</td>
</tr>
<tr>
<td>- UpTrees</td>
<td>- AVL Tree</td>
</tr>
<tr>
<td>- Disjoint Sets</td>
<td></td>
</tr>
</tbody>
</table>
• Constant time access to any element, given an index $a[k]$ is accessed in $O(1)$ time, no matter how large the array grows

• Cache-optimized
 Many modern systems cache or pre-fetch nearby memory values due the “Principle of Locality”. Therefore, arrays often perform faster than lists in identical operations.
• **Efficient general search structure**
 Searches on the sort property run in $O(\lg(n))$ with Binary Search

• **Inefficient insert/remove**
 Elements must be inserted and removed at the location dictated by the sort property, resulting shifting the array in memory – an $O(n)$ operation
• Constant time add/remove at the beginning/end
 Amortized O(1) insert and remove from the front and of the array
 Idea: Double on resize

• Inefficient global search structure
 With no sort property, all searches must iterate the entire array; O(1) time
• First In First Out (FIFO) ordering of data
 Maintains an arrival ordering of tasks, jobs, or data

• All ADT operations are constant time operations
 enqueue() and dequeue() both run in $O(1)$ time
• Last In First Out (LIFO) ordering of data
 Maintains a “most recently added” list of data

• All ADT operations are constant time operations
 push() and pop() both run in O(1) time
In Review: Data Structures

Array
- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
- Hashing
- Heaps
 - Priority Queues
- UpTrees
 - Disjoint Sets

List
- Doubly Linked List
- Skip List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree
In Review: Data Structures

Array
- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
- Hashing
- Heaps
 - Priority Queues
- UpTrees
 - Disjoint Sets

List
- Doubly Linked List
- Skip List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

Graphs
“When you're asked about kd-trees in an interview and Wade comes to mind:”
The Internet, 2003
The OPTE Project (2003)
Map of the entire internet; nodes are routers; edges are connections.
Who’s the real main character in Shakespearean tragedies?

Martin Grandjean (2016)

“Rush Hour” Solution
Unknown Source
Presented by Cinda Heeren, 2016
Wolfram|Alpha's "Personal Analytics" for Facebook
Generated: April 2013 using Wade Fagen-Ulmschneider’s Profile Data
This graph can be used to quickly calculate whether a given number is divisible by 7.

1. Start at the circle node at the top.
2. For each digit d in the given number, follow d blue (solid) edges in succession. As you move from one digit to the next, follow 1 red (dashed) edge.
3. If you end up back at the circle node, your number is divisible by 7.

3703
Conflict-Free Final Exam Scheduling Graph

Unknown Source
Presented by Cinda Heeren, 2016
Class Hierarchy At University of Illinois Urbana-Champaign
A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class_hierarchy_at_illinois/
MP Collaborations in CS 225

Unknown Source

Presented by Cinda Heeren, 2016
Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms
Graph Vocabulary

$G = (V, E)$

$|V| = n$

$|E| = m$

Incident Edges:

$I(v) = \{ (x, v) \in E \}$

Degree(v):

$|I|$

Adjacent Vertices:

$A(v) = \{ x : (x, v) \in E \}$

Path(G_2): Sequence of vertices connected by edges

Cycle(G_1): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.
Graph Vocabulary

$G = (V, E)$
$|V| = n$
$|E| = m$

Subgraph(G):
$G' = (V', E')$:
$V' \in V, E' \in E$, and
$(u, v) \in E \rightarrow u \in V', v \in V'$

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)
Running times are often reported by n, the number of vertices, but often depend on m, the number of edges.

How many edges? **Minimum edges:**

Not Connected:

Connected*:

Maximum edges:

Simple:

Not simple:

$$\sum_{v \in V} \deg(v) =$$