Kruskal's Algorithm

Kruskal's Running Time Analysis
We have multiple choices on which underlying data structure to use to build the Priority Queue used in Kruskal’s Algorithm:

<table>
<thead>
<tr>
<th>Priority Queue Implementations</th>
<th>Heap</th>
<th>Sorted Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building</td>
<td>6~8</td>
<td></td>
</tr>
<tr>
<td>Each removeMin</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Based on our algorithm choice:

<table>
<thead>
<tr>
<th>Priority Queue Implementation</th>
<th>Total Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td></td>
</tr>
<tr>
<td>Sorted Array</td>
<td></td>
</tr>
</tbody>
</table>

Reflections
Why would we prefer a Heap?

Why would be prefer a Sorted Array?

Partition Property
Consider an arbitrary partition of the vertices on G into two subsets U and V.

Let e be an edge of minimum weight across the partition.

Then e is part of some minimum spanning tree.

Proof in CS 374!
Partition Property Algorithm

Prim’s Minimum Spanning Tree Algorithm

<table>
<thead>
<tr>
<th>Adj. Matrix</th>
<th>Adj. List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td></td>
</tr>
<tr>
<td>Unsorted Array</td>
<td></td>
</tr>
</tbody>
</table>

Pseudocode for Prim’s MST Algorithm

```
PrimMST(G, s):
    Input: G, Graph; s, vertex in G, starting vertex of algorithm
    Output: T, a minimum spanning tree (MST) of G
    foreach (Vertex v : G):
        d[v] = +inf
        p[v] = NULL
    d[s] = 0
    PriorityQueue Q // min distance, defined by d[v]
    Q.buildHeap(G.vertices())
    Graph T // "labeled set"
    repeat n times:
        Vertex m = Q.removeMin()
        T.add(m)
        foreach (Vertex v : neighbors of m not in T):
            if cost(v, m) < d[v]:
                d[v] = cost(v, m)
                p[v] = m
    return T
```

Running Time of MST Algorithms

Kruskal’s Algorithm:
Prim’s Algorithm:

Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between n and m?

CS 225 – Things To Be Doing:

1. Programming Exam C ongoing
2. MP7 is released; EC due tonight, Monday, April 23rd
3. lab_graphs available; due Sunday, April 22nd
4. Daily POTDs end next Friday (April 27th); +6 left to complete!