BFS Graph Observations

1. Does our implementation handle disjoint graphs? How?
 a. How can we modify our code to count components?

2. Can our implementation detect a cycle? How?
 a. How can we modify our code to store update a private member variable `cycleDetected_`?

3. What is the running time of our algorithm?

4. What is the shortest path between A and H?

5. What is the shortest path between E and H?
 a. What does that tell us about BFS?

6. What does a cross edge tell us about its endpoints?

7. What structure is made from discovery edges in G?

Big Ideas: Utility of a BFS Traversal

Obs. 1: Traversals can be used to count components.
Obs. 2: Traversals can be used to detect cycles.
Obs. 3: In BFS, d provides the shortest distance to every vertex.
Obs. 4: In BFS, the endpoints of a cross edge never differ in distance, d, by more than 1: |d(u) - d(v)| = 1

Depth First Search – A Modification to BFS
A **Spanning Tree** on a connected graph G is a subgraph, G', such that:

1. Every vertex is in G is in G' and
2. G' is connected with the minimum number of edges

This construction will always create a new graph that is a tree (connected, acyclic graph) that spans G.

A **Minimum Spanning Tree** is a spanning tree with the minimal total edge weights among all spanning trees.

- Every edge must have a weight
 - The weights are unconstrained, except they must be additive (*eg: can be negative, can be non-integers*)
- Output of a MST algorithm produces G':
 - G' is a spanning graph of G
 - G' is a tree
 - G' has a minimal total weight among all spanning trees

CS 225 – Things To Be Doing:

1. Programming Exam C ongoing
2. MP7 is released; EC due tonight, Monday, April 23rd
3. lab_graphs available today; dues Sunday, April 22nd
4. Daily POTDs are ongoing!

Pseudocode for Kruskal’s MST Algorithm

```
KruskalMST(G):
    DisjointSets forest
    foreach (Vertex v : G):
        forest.makeSet(v)
    PriorityQueue Q    // min edge weight
    foreach (Edge e : G):
        Q.insert(e)
    Graph T = (V, {})
    while |T.edges()| < n-1:
        (u, v) = Q.removeMin()
        if forest.find(u) == forest.find(v):
            T.addEdge(u, v)
            forest.union( forest.find(u), forest.find(v) )
    return T
```