Motivation:
Graphs are awesome data structures that allow us to represent an enormous range of problems. To study these problems, we need:
1. A common vocabulary to talk about graphs
2. Implementation(s) of a graph
3. Traversals on graphs
4. Algorithms on graphs

Graph Vocabulary
Consider a graph G with vertices V and edges E, $G=(V,E)$.

- Incident Edges:
 $$I(v) = \{ (x, v) \in E \}$$

- Degree(v): $|I|$

- Adjacent Vertices:
 $$A(v) = \{ x : (x, v) \in E \}$$

- Path(G_2): Sequence of vertices connected by edges

- Cycle(G_i): Path with a common begin and end vertex.

- Simple Graph(G): A graph with no self loops or multi-edges.

- Subgraph(G): $G' = (V', E')$:
 $$V' \in V, E' \in E, \text{ and } (u, v) \in E \Rightarrow u \in V', v \in V'$$

Graphs that we will study this semester include:
- Complete subgraph(G)
- Connected subgraph(G)
- Connected component(G)
- Acyclic subgraph(G)
- Spanning tree(G)

Size and Running Times
Running times are often reported by n, the number of vertices, but often depend on m, the number of edges.

For arbitrary graphs, the minimum number of edges given a graph that is:

- Not Connected:

- Minimally Connected*:

 The maximum number of edges given a graph that is:

- Simple:

- Not Simple:

 The relationship between the degree of the graph and the edges:

Proving the Size of a Minimally Connected Graph

Theorem: Every minimally connected graph $G=(V, E)$ has $|V|-1$ edges.

Proof of Theorem
Consider an arbitrary, minimally connected graph $G=(V, E)$.

Lemma 1: Every connected subgraph of G is minimally connected. *(Easy proof by contradiction left for you.)*
Inductive Hypothesis: For any \(j < |V| \), any minimally connected graph of \(j \) vertices has \(j-1 \) edges.

Suppose \(|V| = 1: \)

Definition: A minimally connected graph of 1 vertex has 0 edges.

Theorem: \(|V|-1 \text{ edges} \implies 1-1 = 0.\)

Suppose \(|V| > 1: \)

Choose any vertex \(u \) and let \(d \) denote the degree of \(u \).

Remove the incident edges of \(u \), partitioning the graph into \(d \) components: \(C_0 = (V_0, E_0) \), ..., \(C_d = (V_d, E_d) \).

By Lemma 1, every component \(C_k \) is a minimally connected subgraph of \(G \).

By our ____________________________:

Finally, we count edges:

Graph Implementation #1: Edge List

<table>
<thead>
<tr>
<th>Vert.</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(a)</td>
</tr>
<tr>
<td>(v)</td>
<td>(b)</td>
</tr>
<tr>
<td>(w)</td>
<td>(c)</td>
</tr>
<tr>
<td>(z)</td>
<td>(d)</td>
</tr>
</tbody>
</table>

Operations:

- `insertVertex(K key);`
- `removeVertex(Vertex v);`
- `areAdjacent(Vertex v1, Vertex v2);`
- `incidentEdges(Vertex v);`

Graph Implementation #2: Adjacency Matrix

<table>
<thead>
<tr>
<th>Vert.</th>
<th>Edges</th>
<th>Adj. Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(a)</td>
<td>(u \</td>
</tr>
<tr>
<td>(v)</td>
<td>(b)</td>
<td>(v \</td>
</tr>
<tr>
<td>(w)</td>
<td>(c)</td>
<td>(w \</td>
</tr>
<tr>
<td>(z)</td>
<td>(d)</td>
<td>(z \</td>
</tr>
</tbody>
</table>

Graph ADT

<table>
<thead>
<tr>
<th>Data</th>
<th>Functions</th>
</tr>
</thead>
</table>
| Vertices | `insertVertex(K key);`
| | `insertEdge(Vertex v1, Vertex v2, K key);`
| Edges | `removeVertex(Vertex v);`
| | `removeEdge(Vertex v1, Vertex v2);`
| Some data structure maintaining the structure between vertices and edges. | `incidentEdges(Edge e);`
| | `areAdjacent(Vertex v1, Vertex v2);`
| | `origin(Edge e);`
| | `destination(Edge e);`

CS 225 – Things To Be Doing:

1. Topic list for Programming Exam C available; starts Tuesday 4/17
2. lab_puzzles released today
3. MP6 released due on Monday, April 16th
4. Daily POTDs are ongoing!