
University of Illinois at Urbana-Champaign
Department of Computer Science

Second Examination
CS 225 Data Structures and Software Principles

Spring 2012
7p-9p, Tuesday, April 3

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. No electronic aids are allowed, either.

• You should have 6 problems total on 15 pages. The last sheet is scratch paper; you may
detach it while taking the exam, but must turn it in with the exam when you leave. Use
scantron forms for Problems 1 and 2.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, assume the code compiles, and thus any com-
piler error is an exam typo (though hopefully there are not any typos).

• We will be grading your code by first reading your comments to see if your plan is good,
and then reading the code to make sure it does exactly what the comments promise. In
general, complete and accurate comments will be worth approximately 30% of the points on
any coding problem.

• Please put your name at the top of each page.

Problem Points Score Grader

1 25 scantron

2 25 scantron

3 20

4 10

5 10

6 10

Total 100

1. [Miscellaneous – 25 points].

MC1 (2.5pts)

Suppose a binary tree holds 127 keys. Then our node-based implementation of that tree has
how many NULL pointers?

(a) 64

(b) 128

(c) 256

(d) The answer cannot be determined from the information given.

(e) None of these is the correct response.

MC2 (2.5pts)

Which of the following sequences of keys cannot be the inOrder traversal of an AVL tree?

(a) 1 3 6 8 12 15 17 19

(b) 50 120 160 172 183 205 200 230

(c) 12 14 20 22 24 27 40 45

(d) More than one of these are not valid inOrder traversals.

(e) All of these are valid inOrder traversals.

MC3 (2.5pts)

Which of the following data structures is used in our implementation of a level order traversal
of a binary tree?

(a) linked list

(b) array

(c) stack

(d) queue

(e) hash table

MC4 (2.5pts)

Consider the following recursive C++ function, and assume our standard node-based imple-
mentation of the BinaryTree class which includes a private definition of a Node class.

#include <vector>

#include <iostream>

using namespace std;

template <typename T>

void BinaryTree<T>::mystery(const Node * cRoot, vector<T> & unk) const

{

if (cRoot != NULL) {

unk.push_back(cRoot->elem);

if (cRoot->left == NULL && cRoot->right == NULL) {

for (size_t i = 0; i < unk.size(); i++)

cout << ’ ’ << unk[i];

cout << endl;

}

else {

mystery(cRoot->left, unk);

mystery(cRoot->right, unk);

}

unk.pop_back();

}

}

Among the following choices, print the best name for the function. (That is, we are asking
for a name that describes what the function does.)

(a) printMirror - prints the mirror image of the binary tree.

(b) printTree - prints each node in the tree exactly once, in preOrder.

(c) printLevel - prints each node in the tree exactly once in level order from bottom to
top.

(d) printPaths - prints every path from the root to a leaf in the tree.

(e) None of these options is a good name for the function.

MC5 (2.5pts)

Think of an algorithm that uses a Stack to efficiently check for unbalanced or unpaired
delimiters. What is the maximum number of left-delimiters that will appear on the stack at
any time when the algorithm analyzes the string {[({ }[])]({ })}?

(a) 1

(b) 2

(c) 3

(d) 4

(e) 5 or more

MC6 (2.5pts)

Suppose we remove the node containing key 10 from the AVL tree below.

!"

#"

$"

%"

&" '("

')"

*"

'" ''"+"

("

What sequence of rotations will restore the balance of the tree? (Assume IOP is used for
2-child removal.)

(a) leftRotate about 9, followed by rightRotate about 8.

(b) rightRotate about 8.

(c) leftRotate about 12, followed by rightRotate about 8.

(d) rightLeftRotate about 9, followed by rightRotate about 8.

(e) None of these choices will rebalance the tree.

MC7 (2.5pts)

Examine the mysteryFunction below? (Note that in context, t->right will not be NULL.)

void mysteryFunction(treeNode * & t) {

treeNode * y = t->right;

t->right = y->left;

y->left = t;

y->height = max(height(y->right), height(y->left)) + 1;

t->height = max(height(t->right), height(t->left)) + 1;

t = y;

}

Which of the following Dictionary functions could invoke mysteryFunction more than once?

(a) insert(key);

(b) remove(key);

(c) find(key);

(d) Two or more of these could invoke mysteryFunction more than once.

(e) None of these would invoke mysteryFunction more than once.

MC8 (2.5pts)

Consider the AVL Tree built by inserting the following sequence of integers, one at a time in
the given order: 10, 15, 20, 13, 11. Which of the following statements is true about the tree?

(a) 11’s left child is NULL and 15’s left child is 11.

(b) 11’s left child is NULL and 15’s left child is 13.

(c) 11’s left child is 10 and 15’s left child is 11.

(d) 11’s left child is 10 and 15’s left child is 13.

(e) None of these answers is correct.

MC9 (2.5pts)

What is the maximum number of keys in a binary search tree of height 30?

(a) 229 − 1

(b) 230 − 1

(c) 231 − 1

(d) The answer cannot be determined by the given information.

(e) None of these answers is correct.

MC 10 (2.5pts)

Use the following 3 code examples to answer the question below. Please assume that all
arrays and images have been properly initialized to hold valid data.

(i) RGBAPixel colorArray[100];

loadColors(colorArray); // initialize array values

#pragma omp parallel for

for (int i = 1; i < 100; i++) {

colorArray[i] = colorArray[i-1];

}

(ii) PNG image("dogPic.PNG"); // load from file

#pragma omp parallel for

for (int i = 0; i < image.width(); i++) {

for (int j = 0; j < image.height(); j++) {

RGBAPixel temp = *image(i, j);

*image(i, j) = *image(i, image.height() - 1 - j);

*image(i, image.height() - 1 - j) = temp;

}

}

(iii) int table [10][10];

#pragma omp parallel for

for(int i = 0; i < 10; i++)

for(int j = 0; j < 10; j++)

table[i][j] = (i+1)*(j+1);

Which of the code examples above is/are NOT correctly parallelized?

(a) Only item (i) is incorrect.

(b) Only item (ii) is incorrect.

(c) Only item (iii) is incorrect.

(d) Two of the above examples are incorrect.

(e) All statements (i), (ii), and (iii) are correct.

2. [Efficiency – 25 points].

Each item below is a description of a data structure, its implementation, and an operation
on the structure. In each case, choose the appropriate worst case running time from the list
below. The variable n represents the number of items (keys, data, or key/data pairs) in the
structure. In answering this question you should assume the best possible implementation
given the constraints, and also assume that every array is sufficiently large to handle all items.
Please use the scantron sheets for your answers.

(a) O(1)

(b) O(log n)

(c) O(n)

(d) O(n log n)

(e) O(n2)

(MC 11) Enqueue for a Queue implemented with an array.

(MC 12) Pop for a Stack implemented with an array.

(MC 13) Find a key in a Binary Tree (not necessarily BST).

(MC 14) Remove the root of a balanced Binary Search Tree.

(MC 15) Find the largest key in a Binary Search Tree.

(MC 16) Find the largest key in an AVL Tree.

(MC 17) For each node in a Binary Search Tree, compute the length of the
longest path from the node to a leaf.

(MC 18) Make a copy of an AVL tree.

(MC 19) Determine if two given Binary Search Trees are copies of one another.

(MC 20) Remove all the nodes in the right subtree of a non-empty AVL tree.

3. [Quadtrees – 20 points].

For this question, consider the following partial class definition for the Quadtree class, which
uses a quadtree to represent a square bitmap image as in MP5. As a simplifying assumption
for this problem, you may assume that only leaf nodes contain valid RGBApixel elements, and
that the element field in all non-leaf nodes is not initialized to any particular value (we will
not be doing any pruning of this tree).

class Quadtree

{

public:

// constructors and destructor; all of the public methods from MP5, including:

void buildTree(PNG const & source, int d);

RGBApixel getPixel(int x, int y) const;

PNG decompress() const;

void clockwiseRotate(); // 90 degree turn to the right

void prune(int tolerance);

int pruneSize(int tolerance) const;

int idealPrune(int numLeaves) const;

private:

struct QuadtreeNode {

QuadtreeNode* nwChild; // pointer to northwest child

QuadtreeNode* neChild; // pointer to northeast child

QuadtreeNode* swChild; // pointer to southwest child

QuadtreeNode* seChild; // pointer to southeast child

RGBApixel element; // the pixel stored as this node’s "data"

QuadtreeNode(RGBApixel const & elem);

QuadtreeNode();

};

QuadtreeNode* root; // ptr to root of quadtree, NULL if tree is empty.

int resolution; // number of pixels on a side of the image (assume 2^k)

void copy(QuadtreeNode *& firstNode, QuadtreeNode * secondNode);

void clear(QuadtreeNode *& curNode);

};

You may not use any methods or member data of the Quadtree or QuadtreeNode classes
which are not explicitly listed in the partial class declaration above. You may assume that
each child pointer in a new QuadtreeNode is NULL.

(a) (3 points) Write a public member function void buildTree(PNG const & source, int

d), which creates a Quadtree rooted at private member root representing the d-by-d
block in the upper left corner of the image in source. Your function can call the private
helper function that you will be writing in the next part of the problem, and it can use
any of the other private member functions listed above. You may assume that the image
is at least d-by-d, that d ≥ 1, and that d is a power of 2. Write the function as it would
appear in the quadtree.cpp file for the Quadtree class.

void buildTree(PNG const & source, int d) {

// Your code goes here

}

(b) (6 points) Write the private helper method you invoked in the previous part. For this
one, you may choose the return value and the number and types of parameters. Note
that our skeleton below should have sufficiently many lines for your solution, but you
are welcome to add more if you need to do so. Please comment your code.

_________ ____________::_________________

(___) {

}

(c) (2 points) In our implementation of a Quadtree we have said that if a node has one child,
then all four children must exist–even in a pruned tree. Which one of the following terms
is an appropriate description of this characteristic of our Quadtree? (Hint: we discussed
this term in the context of binary trees, but it applies to Quadtrees, as well.)

perfect complete full balanced binary

(d) (3 points) Suppose a pruned Quadtree has height h ≥ 0. What is the least number of
nodes it contains in terms of h?

(e) Analyze and give tight asymptotic bounds on the running time of each of the following
functions from MP5. Your bound should be stated in terms of N , the number of nodes
in the Quadtree, and you can assume that the functions are called on an unpruned tree.
Briefly justify your answers.

i. (2 points) buildTree: This function takes two arguments, a PNG object by reference
and an integer d, and creates a Quadtree representing the upper-left d by d block
of the PNG. (N is the number of nodes after the tree is built.)

ii. (2 points) getPixel: This function takes two arguments, x and y, and returns the
RGBApixel corresponding to the pixel at coordinates (x, y) in the bitmap image
which the quadtree represents.

iii. (2 points) clockwiseRotate: This function rotates the Quadtree object’s underlying
image clockwise by 90 degrees.

4. [Flood Fill – 10 points].

(a) (4 points) Suppose we execute function DFSfillSolid, one of two main fill routines
from MP4, on the following 8x8 pixel image, beginning at the circled node, (3,5), and
changing white pixels to solid red. Place the numbers 1 through 12, in order, in the first
12 pixels whose colors are changed by the function. Assume that we start the algorithm
by adding the circled cell to the ordering structure, and that we add the four neighboring
pixels to the structure clockwise beginning on the right, followed by down, left, and up.

(b) (3 points) Suppose we want to fill some part of a arbitrary n-by-n image. What is the
worst-case running time of DFSfillSolid if we start from an arbitrary location? Be
sure to give your running time in terms of n, the length of one side of the square image.

(c) (3 points) What data structure was used to order the points for filling in function
DFSfillSolid?

5. [AVL Tree Height – 10 points].

In this problem you will complete the proof of the following theorem:

The height of an n-node AVL Tree is O(log n).

Fill in the blanks to complete the proof.

Preliminaries: Let H(n) denote the maximum height of an n-node AVL Tree, and let
N(h) denote the minimum number of nodes in an AVL tree of height h. To prove that
H(n) = O(log n), we argue that

H(n) ≤ 2 log2 n, for all n.

Rather than prove this inequality directly, we’ll show equivalently that

N(h) ≥ .

Proof: For an arbitrary value of h, the following recurrence holds for all AVL Trees:

N(h) = + +

and N(0) = , N(1) =

This expression for N(h) simplifies to the following inequality which is a function of N(h−2):

N(h) ≥ ∗

By an inductive hypothesis which states:

we now have:

N(h) ≥ 2 ∗ = ,

which was what we wanted to prove.

6. [Hashing – 10 points].

The following diagram is intended to illustrate the behavior of a given hash function. Specif-
ically, our diagram illustrates the hash function defined by h(k1) = 3, h(k2) = 2, and
h(k3) = 0, when mapped to a table of size 5. In the first 3 parts of this problem we will ask
you to complete diagrams for hash functions with particular characteristics.

k1

k2

k3

0

1

2

3

4

(a) (2 points) Complete the diagram below to illustrate a perfect hash function.

k1

k2

k3

k4

k5

0

1

2

3

4

5

6

7

(b) (2 points) Complete the diagram below to illustrate a hash function that clearly and
extremely violates the Simple Uniform Hashing Assumption.

k1

k2

k3

k4

k5

0

1

2

3

4

5

6

7

(c) (2 points) Complete the diagram below to illustrate a hash function with exactly two
collisions on the given set of keys.

k1

k2

k3

k4

k5

0

1

2

3

4

5

6

7

(d) (2 points) What is the load factor for each of the hash tables in parts (a) through (c)?

(e) (2 points) We argue that the dictionary function find runs in constant time using a
hash table. This argument depends on two things. List them here:

•

•

scratch paper

