
University of Illinois at Urbana-Champaign
Department of Computer Science

Second Examination
CS 225 Data Structures and Software Principles

Fall 2010
7p-9p, Tuesday, November 2

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. No electronic aids are allowed, either.

• You should have 5 problems total on 15 pages. The last sheet is scratch paper; you may
detach it while taking the exam, but must turn it in with the exam when you leave. Use
scantron forms for Problems 1 and 2.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

• We will be grading your code by first reading your comments to see if your plan is good,
and then reading the code to make sure it does exactly what the comments promise. In
general, complete and accurate comments will be worth approximately 30% of the points on
any coding problem.

• Please put your name at the top of each page.

Problem Points Score Grader

1 20 scantron

2 25 scantron

3 30

4 15

5 10

Total 100

1. [Miscellaneous – 20 points].

MC1 (2.5pts)

Which of the following is not a reasonable choice for implementing the Dictionary Abstract
Data Type?

(a) AVL Tree

(b) B-Tree

(c) Binary Search Tree

(d) Stack

(e) All of these are reasonable choices for implementing a Dictionary.

MC2 (2.5pts)

Suppose we do a level order traversal of the following binary tree. What is the maximum
number of non-null nodes on the queue at one time in the execution of the algorithm?

(a) 4

(b) 5

(c) 6

(d) 12

(e) None of these is the correct number.

MC3 (2.5pts)

Suppose we implement a stack using a dynamically allocated array. If the array fills, we are
faced with a dilemma. From among the following choices, select the one that best describes
our strategy for handling a filled array.

(a) We declare a new array, twice as big as the original, and copy the data into the new
space for a total cost of O(n), over a sequence of n pushes.

(b) We declare another array and keep track of which of the two (or more) arrays contain
the current top of the stack in a private member of the stack class. This costs us O(1)
per push.

(c) For some fixed k, we create a new array of size n + 2k and copy the data into the new
space for an average cost of O(1) per push operation.

(d) We avoid implementing a stack using a dynamically allocated array, because it is ineffi-
cient to have to reallocate memory.

(e) None of these answers is a reasonable response.

MC4 (2.5pts)

Consider the following partial C++ code:

#include <vector>
#include <iostream>
using namespace std;

template <class Iter, class Formatter>
void mystery(Iter front, Iter end, Formatter doSomething) {

while (front != end) {
doSomething(*front, *end);
front++; end--;}

}

template <class T> class dunno {
public:

void operator()(T & a, T & b) {
a = a + b;}

}

int main() {
vector<int> v; ... // insert an odd number of elements into the vector

vector<int>::iterator it1 = v.begin();
vector<int>::iterator it2 = v.end();
it2--;

dunno<int> d;
mystery<vector<int>::iterator,dunno<int> >(it1, it2, d);

for (int i = 0; i < v.size(); i++) cout << v[i] << endl;
return 0; }

If you assume that all iterators are bi-directional and non-constant, which of the following
statements is true?

(a) This code does not compile because of a type mismatch in the mystery parameter list.
(b) This code does not compile because of a syntax error in the template instantiation for

mystery.
(c) If the vector consists of the integers 1, 2, 3, 4, 5, 6, 7 in that order, with the first item on

the left, then the output is 1, 2, 3, 4, 5, 6, 7. (i.e. the code does not change the vector.)
(d) If the vector consists of the integers 1, 2, 3, 4, 5, 6, 7 in that order, with the first item

on the left, then the output is 8, 8, 8, 4, 5, 6, 7.
(e) None of these options describes the behavior of this code.

MC5 (2.5pts)

What is the real name of mysteryFunction? Note that in context, t->right will not be null.

void mysteryFunction(treeNode * & t) {

treeNode * y = t->right;
t->right = y->left;
y->left = t;
y->height = max(height(y->right), height(y->left)) + 1;
t->height = max(height(t->right), height(t->left)) + 1;
t = y;

}

(a) leftRotate

(b) rightRotate

(c) rightLeftRotate

(d) leftRightRotate

(e) None of these choices are correct.

MC6 (2.5pts)

Consider the Binary Search Tree built by inserting the following sequence of integers, one at
a time: 5, 4, 7, 9, 8, 6, 2, 3, 1. If the node containing 5 were removed from the tree, what would
be the right child of the node containing 2?

(a) Null

(b) The node containing 3.

(c) The node containing 4.

(d) The node containing 6.

(e) None of these answers is correct.

MC7 (2.5pts)

What is the maximum number of keys that can be stored in a B-Tree of order 32 and height
6?

(a) 6 ∗ 25 − 1

(b) 225 − 1

(c) 230 − 1

(d) 235 − 1

(e) None of the above.

MC 8 (2.5pts)

Which of the following statements is true for a B-tree of order m containing n items?

(i) The height of the B-tree is O(logm n) and this bounds the total number of disk seeks.

(ii) A node contains a maximum of m − 1 keys, and this bounds the number of disk seeks
at each level of the tree.

(iii) An order 2 B-tree is also a Binary Search Tree.

Make one of the following choices.

(a) Only item (i) is true.

(b) Only item (ii) is true.

(c) Only item (iii) is true.

(d) Two of the above choices are true.

(e) All choices (i), (ii), and (iii) are true.

2. [Efficiency – 25 points].

Each item below is a description of a data structure, its implementation, and an operation
on the structure. In each case, choose the appropriate running time from the list below. The
variable n represents the number of items (keys, data, or key/data pairs) in the structure.
In answering this question you should assume the best possible implementation given the
constraints, and also assume that every array is sufficiently large to handle all items. Please
use the scantron sheets for your answers.

(a) O(1)

(b) O(log n)

(c) O(n)

(d) O(n log n)

(e) None of these running times is appropriate.

(MC 9) Enqueue for a Queue implemented with a Singly Linked List with a
tail pointer, where the front of the queue is at the end (tail) of the list.
(Enqueue occurs at the head.)

(MC 10) Dequeue for a Queue implemented with a Singly Linked List with a
tail pointer, where the front of the queue is at the end (tail) of the list.
(Enqueue occurs at the head.)

(MC 11) Worst case for finding a given key in a Binary Search Tree.

(MC 12) Worst case for inserting a single key into an AVL Tree.

(MC 13) Worst case for an algorithm to find the smallest key that is within
fixed distance d from a given key in a Binary Search Tree (if such a key exists).

(MC 14) Worst case for an algorithm to find the smallest key that is within
fixed distance d from a given key in an AVL Tree (if such a key exists).

(MC 15) Given a Binary Tree, check to see if it is a Binary Search Tree.

(MC 16) Remove all the nodes from an AVL Tree (as is done by the destructor).

(MC 17) Compute the height of every subtree in a Binary Search Tree.

(MC 18) Given a Binary Search Tree whose subtree heights have been computed
determine if the Binary Search Tree is an AVL Tree.

3. [Quadtrees – 30 points].

For this question, consider the following partial class definition for the Quadtree class, which
uses a quadtree to represent a d-by-d square bitmap image as in MP5. As a simplifying
assumption for this problem, you may assume that only leaf nodes contain valid RGBApixel
elements, and that the element field in all non-leaf nodes is not initialized to any particular
value (we will not be doing any pruning of this tree, though it may already have been pruned).
Just as in MP5, you may assume that d is a power of 2.

class Quadtree
{
public:

// constructors and destructor; all of the public methods from MP5, including:

void buildTree(BMP const & source, int newResolution);
RGBApixel getPixel(int x, int y) const;
BMP decompress() const;
void clockwiseRotate(); // 90 degree turn to the right
void prune(int tolerance);
int pruneSize(int tolerance) const;
int idealPrune(int numLeaves) const;

private:
struct QuadtreeNode {

QuadtreeNode* nwChild; // pointer to northwest child
QuadtreeNode* neChild; // pointer to northeast child
QuadtreeNode* swChild; // pointer to southwest child
QuadtreeNode* seChild; // pointer to southeast child

RGBApixel element; // the pixel stored as this node’s "data"
QuadtreeNode(RGBApixel const & elem);
QuadtreeNode();

};

QuadtreeNode* root; // ptr to root of quadtree, NULL if tree is empty.
int resolution; // number of pixels on a side of the image (assume 2^k)

void copy(QuadtreeNode *& firstNode, QuadtreeNode * secondNode);
void clear(QuadtreeNode *& curNode);
// plus many helper functions of your own design

};

You may assume that each child pointer in a new QuadtreeNode is NULL, and that the
Quadtree has been accurately constructed so that the resolution is set.

(a) (3 points) Write the getPixel function declared in the public section above. This
function takes two arguments,x and y, in that order, both nonnegative integers. It
returns the RGBApixel corresponding to the pixel at coordinates (x, y) in the bitmap
image which the quadtree represents (where (0, 0) is in the upper left corner of the
image). Note that the quadtree may not contain a node specifically corresponding to
this pixel since the tree may have been pruned. In this case, getPixel retrieves the
pixel (i.e. the color) of the smallest square region within which point (x, y) would lie. If
the supplied coordinates fall outside of the bounds of the underlying bitmap, or if the
current Quadtree is ”empty” then the returned RGBApixel should be the one which is
created by the default RGBApixel constructor. Write the function as it would appear
in the quadtree.cpp file for the Quadtree class. (Note: part (b) of this problem asks you
to write a helper function that you may call here.)

_________ ____________::_________________

{

}

(b) (7 points) Write the private helper function that actually does the work for the getPixel
function in part (a). (Note that if your approach to this problem is markedly different
than ours, just write your solution on the back of the previous page. Your entire solution
to getPixel will then be graded out of ten points.)

_________ ____________::_________________

{

}

(c) (5 points) Analyze and give a tight asymptotic bound on the running time of your
implementation for part (b). Your bound should be stated in terms of d, the number
of pixels in the width (or height) of the original image represented by the Quadtree.
Briefly justify your answer.

(d) (2 points) Suppose a pruned Quadtree has height h ≥ 0. What is the least number
of nodes it contains in terms of h? (Briefly explain or draw a helpful sketch to assure
partial credit, and be exact.)

(e) (2 points) Suppose a Quadtree has n nodes. What is its greatest possible height in terms
of n? (Please be exact.)

(f) In this part of the problem we will derive an expression for the maximum number of
nodes in a Quadtree of height h, and prove that our solution is correct. Let N(h)
denote the maximum number of nodes in a Quadtree of height h.

i. (3 points) Give a recurrence for N(h). (Don’t forget appropriate base case(s).)

We solved the recurrence and found a closed form solution for N(h) to be:

N(h) =
4h+1 − 1

3
, h ≥ −1

ii. (8 points) Prove that our solution to your recurrence from part (a) is correct by
induction:
Consider a maximally sized Quadtree of arbitrary height h.
• If h = −1 then the expression above gives: which is the maximum

number of nodes in a tree of height -1 (briefly explain).
• otherwise, if h > −1 then by an inductive hypothesis that says:

we have N() = nodes.

so that N(h) = = ,
which was what we wanted to prove.

4. [AVL Trees – 15 points].

Parts (a) through (e) below refer to this AVL Tree: (Note that no part is dependent on any
other–each operation is performed on the original tree.)

(a) (3 points) If key 15 is inserted into the tree, the result will be a rotation
about the node containing key .

(b) (3 points) If keys 0 and 1 are inserted into the tree, in that order, the result will be a
rotation about the node containing key .

(c) (3 points) If key 10 is removed from the tree, the result will be a rotation
about the node containing key .

(d) (3 points) Name a key, that when removed results in a right rotation: .

(e) (3 points) Name a key, that when removed results in a right-left rotation, followed by a
right rotation: .

5. [Tricky – 10 points].

Here are the Stack and Queue class definitions you used in MP4:

template<class T> class Stack {
public:

void push(T const & newItem); // adds new item to top of stack
T pop(); // removes top item from the stack and returns its value
T peek() const; // returns value of top item on stack, but does not remove
bool isEmpty() const; // returns true if stack is empty, false o/w

private: ... // not relevant here
};

template<class T> class Queue {
public:

void enqueue(T const & newItem); // adds new item to back of queue
T dequeue(); // removes front item from the queue and returns its value
T peek() const; // returns value of front item on queue, but does not remove
bool isEmpty() const; // returns true if queue is empty, false o/w

private: ... // not relevant here
};

Write the recursive function verifySame whose function prototype is below. The function
should return true if the parameter stack and queue contain only elements of exactly the
same values in exactly the same order, and false otherwise (see example below). You may
assume the stack and queue contain the same number of items!

We’re going to constrain your solution so as to make you think hard about solving it elegantly:
1) Your function may not use any loops; 2) In your function you may only declare ONE local
boolean variable to use in your return statement, and you may only declare TWO local
variables of parameterized type T to use however you wish–no other local variables can be
used; and 3) After execution of verifySame, the stack and queue must be unchanged. Be
sure to comment your code VERY well.

Example: This stack and queue are considered to be the same. Note that we match the
bottom of the stack with the front of the queue. No other queue matches this stack.

template< class T> bool verifySame(Stack<T> & s, Queue<T> & q) {

}

scratch paper

