

Data Structures

Graph Fundamentals

CS 225

Brad Solomon & G Carl Evans

Department of Computer Science

Plagiarism is not ok

Learning Objectives

Finish discussing MinHash Sketches

Define graph vocabulary

Discuss graph implementation and storage strategies

Cardinality Sketch

Given any dataset and a SUHA hash function, we can **estimate the number of unique items** by tracking the **k-th minimum hash value**.

Applied Cardinalities

Cardinalities

Set similarities

$$|A|$$
 $|B|$

$$O = \frac{|A \cap B|}{\min(|A|, |B|)}$$

$$|A \cap B|$$

$$J = \frac{|A \cap B|}{|A \cup B|}$$

Real-world Meaning

Set Similarity Review

To measure **similarity** of A & B, we need both a measure of how similar the sets are but also the total size of both sets.

$$J = \frac{|A \cap B|}{|A \cup B|}$$

J is the **Jaccard coefficient**

MinHash Sketch

Claim: Under SUHA, set similarity can be estimated by sketch similarity!

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)

MinHash Jaccard Estimation

Let's assume we have sets A and B sampled uniformly from [0, 100].

Instead of storing A & B, we store the bottom-8 MinHash

MinHash Jaccard Estimation

H=8

We dont $know \mid A \cup B \mid$, but we can estimate it!

Sketch of $|A \cup B|$

	•
2	8
3	9
6	11
7	15

MinHash Cardinality Estimate

We can estimate the cardinality of the actual sets using our sketches.

Our sets sampled from [0, 100].

$$\frac{15}{100} = \frac{8}{N+1}$$

$$\frac{1}{N+1}$$

$$\frac{1}{N+1}$$

$$\frac{1}{N+1}$$

$$N = \left(\frac{800}{15}\right) - 1$$

MinHash Indirect Jaccard Estimation

$$\frac{|A| \cap |B|}{|A| \cup |B|} = \frac{|A| + |B| - |A \cup B|}{|A \cup B|}$$

k=8 MinHash sketches Our sets sampled from [0, 100]

Sketch A

3	15
7	17
8	22
11	23

Sketch B

2	9	
3	11	
6	17	
7	23	

Sketch of
$$A \cup B$$

2	8	
3	9	
6	11	
7	15	

$$= \frac{(800/23-1) + (800/23-1) - (800/15-1)}{800/15-1}$$

$$=\frac{34.782 + 34.782 - 53.333 - 1}{53.333 - 1}$$

Jalcong

MinHash Direct Jaccard Estimate

We can also estimate cardinality directly using our sketches!

Sketch A

3	15	
7	17	
8	22	
11	23	

Sketch B

2	9	
3	11	
6	17	
7	23	

Intersection

3	33
7	
1)	
1>	

Union

8	8	17	-
3	9	22	
Q	11	23	1
7	15		-

Accurate subsample

SUHA!

Jaccal!

MinHash Sketch

We can convert any hashable dataset into a MinHash sketch

We lose our original dataset, but we can still estimate two things:

Alternative MinHash Sketch Approaches

The easiest version of MinHash uses k hashes. How might this work?

Lab. bloom -> ve (ter (hosh fuctions) hash each one & build MH by truck slobel min for each hash 1) I need k hashes ____ K hash independence vory 1) Sequence decomposed into **kmers**

2) Multiple hash functions (Γ) map kmers to values.

- 3) The smallest values for each hash function is chosen
- 4) The Jaccard similarity can be estimated by the overlap in the **Min**imum **Hash**es (**MinHash**)

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing Berlin et al (2015) *Nature Biotechnology*

MinHash in practice

of Of Traphs

Mash: fast genome and metagenome distance estimation using MinHash Ondov et al (2016) Genome Biology

Alternative MinHash Sketch Approaches

What if I have a dataset which is **much** larger than another?

$$S_1 = \{1, 3, 40, 59, 82, 101\} \Rightarrow \int_{1}^{3} \frac{1}{3}, 49, 39$$
 $S_2 = \{1, 2, 3, 4, 5, 6, 7, ... 59, 82, 101, ...\}$
 $K = \int_{1}^{3} MH$
 $S_3 \Rightarrow (\int_{1}^{3} \int_{3}^{3} \frac{1}{3})$
 $S_3 \Rightarrow (\int_{1}^{3} \int_{3}^{3} \frac{1}{3})$

101

Alternative MinHash sketches

Bottom-k minhash has low accuracy if the cardinality of sets are skewed

Ondov, Brian D., Gabriel J. Starrett, Anna Sappington, Aleksandra Kostic, Sergey Koren, Christopher B. Buck, and Adam M. Phillippy. **Mash Screen: High-throughput sequence containment estimation for genome discovery**. *Genome biology* 20.1 (2019): 1-13.

Alternative MinHash Sketch Approaches

If there is a large cardinality difference, use k-partitions!

K-Partition Minhash v.' n} _ bit string Item 01101011 Hash **Partition** 11010110 01100000 Most 5:9 bits

K-Partition Minhash

Hint: What bitwise operator(s) will allow me to do this?

What information do I need to do this in general?

MP_Sketching: A MinHash experiment

Using legitimate hashes, write MinHash sketch three ways:

```
std::vector<uint64_t> khash_minhash(std::vector<int> inList, std::vector<hashFunction> hv);
std::vector<uint64 t> kminhash(std::vector<int> inList, unsigned k, hashFunction h);
           Gr Botton K Minhosh (1 hash)
std::vector<uint64_t> kpartition_minhash(std::vector<int> inList, int part_bits, hashFunction h);
```


MP_Sketching: A MinHash experiment

Build a weighted graph of every possible pairwise comparison!

Nodes: Routers and servers

Edges: Connections

The Internet 2003

The OPTE Project (2003)

This graph can be used to quickly calculate whether a given number is divisible by 7.

- 1. Start at the circle node at the top.
- 2. For each digit **d** in the given number, follow **d** blue (solid) edges in succession. As you move from one digit to the next, follow **1** red (dashed) edge.
- 3. If you end up back at the circle node, your number is divisible by 7.

3703

Strustor has Meaning!

"Rule of 7"

Unknown Source
Presented by Cinda Heeren, 2016

Graphs

- 1. A common vocabulary
- 2. Graph implementations
- 3. Graph traversals \rightleftharpoons
- 4. Graph algorithms

$$G = (V, E)$$

A **graph** is a data structure containing a set of vertices and a set of edges

Degree: # of edges touching a vertex

Adjacency: Two vertices are adjacent if they are connected by an edge

Path: A sequence of vertices (or edges) between two nodes

A graph has **no root** and **may contain cycles**

Net

Directed: Edges are one way connections

Undirected: Traversable in either direction

Weighted: A value associated with an edge

Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

How many edges? Minimum edges:

Not Connected: (

Connected*: ^ -

Maximum edges:

Maximum edges:

The edge per pair

No stiff edges

$$deg(v) = 2|E|$$

$$deg(v) = 2 | E |$$

Graph ADT

Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);

Graph Implementation Idea

Vertex Collection:

Edge Collection:

insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

G.incidentEdges(v1).contains(v2)

insertEdge(Vertex v1, Vertex v2, K key):

Pros:

Cons:

Graph Implementation: Adjacency Matrix

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

	u	V	W	Z
u				
V				
w				
Z				