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Learning Objectives

Define graph vocabulary

Discuss graph implementation and storage strategies

Finish discussing MinHash Sketches



Cardinality Sketch

>Read 1

ATGGTTAGAATTAAACCCGG

TGCTAATAAACCUAGTGATG
>Read 2

CGATAGCACAGGTAGATCC

TACGTAGAGGTCATTAGCC
>Read 3

TACGTAGAGGTCATTAGCCG

TGCTAATAAACCUAGTGATG

Hash 0.253 0.839 0.327 0.655 0.491

Given any dataset and a SUHA hash function, we can estimate the 
number of unique items by tracking the k-th minimum hash value.



Applied Cardinalities
Real-world 
Meaning

AGGCCACAGTGTATTATGACTG

|||||||||||  |||||||||

AGGCCACAGTGAGTTATGACTG


AAAAAAAAAAAGATGT-AAGTA

|||||||||||||||| |||||

AAAAAAAAAAAGATGTAAAGTA


GAGG--TCAGATTCACAGCCAC

||||  ||||||||||||||||

GAGGGGTCAGATTCACAGCCAC

Set similarities

J =
|A ∩ B |
|A ∪ B |

O =
|A ∩ B |

min( |A | , |B | )

Cardinalities

|A |
|B |

|A ∪ B |
|A ∩ B |



Set Similarity Review
To measure similarity of  & , we need both a measure of how 
similar the sets are but also the total size of both sets.

A B

J =
|A ∩ B |
|A ∪ B |

 is the Jaccard coefficientJ



A

B

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. Mash Screen: 
high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)

MinHash Sketch

Claim: Under SUHA, set similarity can be estimated by sketch similarity!



MinHash Jaccard Estimation

Instead of storing A & B, we store the bottom-8 MinHash

3 7 8 11 15 17 22 23

2 3 6 7 9 11 17 23
A
B

0 8 16 24

...

Sketch A Sketch B

3 15
7 17
8 22
11 23

2 9
3 11
6 17
7 23

Let’s assume we have sets A and B sampled uniformly from [0, 100].



We dont know , but we can estimate it!|A ∪ B |

3 7 8 11 15 17 22 23

2 3 6 7 9 11 17 23
A
B

0 8 16 24

...

3 15
7 17
8 22

11 23

2 9
3 11
6 17
7 23

∪ =

2 8

3 9

6 11

7 15

Sketch A Sketch B

MinHash Jaccard Estimation

|A ∪ B |
Sketch of



We can estimate the cardinality of the actual sets using our sketches.

2 8
3 9
6 11
7 15

|A ∪ B |

MinHash Cardinality Estimate

Sketch of Our sets sampled from [0, 100].

15
100

=
8

N + 1



|A ∪ B |
2 8
3 9
6 11
7 15

2 9
3 11
6 17
7 23

Sketch A Sketch B
3 15
7 17
8 22

11 23

|A | ∩ |B |
|A | ∪ |B |

=
|A | + |B | − |A ∪ B |

|A ∪ B |

=
(800/23−1) + (800/23−1) − (800/15−1)

800/15−1

 MinHash sketchesk = 8
MinHash Indirect Jaccard Estimation

Sketch of

=
34.782 + 34.782 − 53.333 − 1

53.333 − 1
≈ 0.29

Our sets sampled from [0, 100]



We can also estimate cardinality directly using our sketches!

2 9
3 11
6 17
7 23

Sketch A Sketch B
3 15
7 17
8 22

11 23

MinHash Direct Jaccard Estimate

Intersection Union



MinHash Sketch

{1 , 3 , 5}

We can convert any hashable dataset into a MinHash sketch

We lose our original dataset, but we can still estimate two things:

1.

2.



The easiest version of MinHash uses k hashes. How might this work?

Alternative MinHash Sketch Approaches
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applied to document similarity20, image similarity22, sequence simi-
larity23–25 and metagenomic clustering26. The approach can also be 
viewed as a generalization of minimizers27. Briefly, to create a sketch 
for a DNA sequence, one must convert all k-mers (also known as, shin-
gles or q-grams) to integer fingerprints using multiple, randomized 
hash functions. For each hash function, only the minimum valued 
fingerprint, or min-mer, is retained. The collection of min-mers for 
a sequence makes the sketch (Fig. 1 and Online Methods). This local-
ity-sensitive hashing allows the Jaccard similarity of two k-mer sets 
to be estimated by simply computing the Hamming distance between 
their sketches. The resulting estimate is strongly correlated with the 
number of shared k-mers between two sequences (Supplementary 
Fig. 1). Because the sketches are comparatively small, this is a com-
putationally efficient technique for estimating similarity.

RESULTS
MinHash alignment filtering
MHAP uses MinHash sketches for efficient alignment filtering. The 
time required to hash, index, store and compare k-mers is propor-
tional to the sketch size, so it is preferable to keep sketches small. 
However, using fewer min-mers reduces the sensitivity of the filter. 
It is possible to use sketches an order of magnitude smaller than the 
input reads, while maintaining acceptable overlap detection accuracy 
(Fig. 2a,b). For human, using a small value of k (e.g., 10) increases the 
number of false matches found, so it is preferable to use the largest 
value of k that maintains sensitivity.

Specifically, 16-mers can effectively detect 2 kbp overlaps from  
10 kbp reads simulated from the human genome with an overlap error 
rate of 30%, so MHAP uses k = 16 by default (Fig. 2b, Supplementary 
Notes 1 and 2 and Online Methods). Sensitivity can be further 
improved by increasing the sketch size, which reduces the expected 
error of the Jaccard estimate (Supplementary Fig. 1). Additionally, 
because the error rate of an alignment is roughly additive in the 
error rate of the two reads, mapping high-error reads to a reference 
genome is easier than overlapping. For mapping 10 kbp reads to the 
human genome with a 15% error rate, a sketch of only ~150 16-mers 
is required to achieve over 80% sensitivity.

The efficiency of MHAP improves with increased read length. 
Figure 2c compares the total number of k-mers counted during 
MHAP overlapping with a direct approach that exactly measures the 
Jaccard similarity between two reads without using sketches. For a 

fixed number of total bases sequenced, and a minimum 20% overlap 
length, the relative number of min-mer comparisons performed by 
MHAP decays rapidly with increasing read length, because the com-
plexity is governed only by the sketch size (a constant) and the number 
of reads (which decreases for increasing read length; Supplementary 
Note 1 and Supplementary Table 1). Thus, the efficiency of MHAP 
is expected to improve with the increasing read length and accuracy 
of future long-read sequencing technologies.

MHAP overlapping performance
In addition to being fast, MHAP is also a highly sensitive overlap-
per. We evaluated the sensitivity and specificity of MHAP versus two 
other tools designed for SMRT reads, BLASR28 and DALIGNER29. 
BWA-MEM30, SNAP31 and RazerS32 were also evaluated, but current 
versions of these algorithms did not reliably detect noisy overlaps 
between all pairs of reads (Supplementary Note 3). The performance  
of MHAP, BLASR and DALIGNER was evaluated by comparing 
detected overlaps to true overlaps, which were inferred from map-
ping reads to reference genomes, and the tools were evaluated using 
multiple parameter settings and sequencing chemistries (Table 1, 
Supplementary Tables 2 and 3 and Supplementary Figs. 2 and 3 
and Online Methods).

MHAP sensitivity is tunable based on the size of k, the sketch size 
and the Jaccard similarity threshold. Based on the parameter sweep 
(Supplementary Table 2) and empirical assembly tests, two MHAP 
parameter settings (fast and sensitive) were chosen that balanced 
speed with accuracy (Table 1 and Supplementary Note 2). BLASR 
sensitivity is primarily affected by the bestn parameter, which con-
trols how many alignments are reported for each read. The HGAP15 
assembler sets bestn equal to the depth of sequencing coverage, but 
this can result in missed overlaps for repetitive genomes. BLASR 
runtime and sensitivity was highly genome-dependent and affected 
by sequence complexity and uneven replicon coverage (Table 1). 
Like BWA-MEM, BLASR was originally designed for mapping  
to a reference and is not ideally suited for overlapping all pairs  
of reads. In contrast, MHAP considers all possible alignments; it 
was consistently accurate across all genomes tested and an order of  
magnitude faster than BLASR at all levels of sensitivity 
(Supplementary Figs. 2 and 3).

Like MHAP, DALIGNER utilizes efficient k-mer matching to detect 
long-read overlaps. Although developed for the Dazzler assembler, 

19

S1 : : S2

14 57 36

a

b

c

d
e

14 57 36 19
58 37 16 15
40 23 2 61
33 28 11 54
5 48 47 26

22 1 60 43
24 7 50 45
33 28 11 54
5 48 47 26

20 3 62 41
18 13 56 39

[ 5,    1,    6,    6 ]
Sketch (S2)

min-mers

36 19 14 57
18 13 56 39
11 54 33 28
44 27 6 49
49 44 27 6
5 48 47 26

22 1 60 43
24 7 50 45
35 30 9 52
13 56 39 18
54 33 28 11
27 6 49 44

[ 5,    1,    2,    15]
Sketch (S1)

J (S1, S2) ≈ 2/4 = 0.5

S1 :

S2 :

�1 �2 �3 �4 �1 �2 �3 �4

Figure 1 Rapid overlapping of noisy reads using MinHash sketches.  
(a) To create a MinHash sketch of a DNA sequence S, we first decomposed 
the sequence into its constituent k-mers. In the example shown, k = 3,  
resulting in 12 k-mers each for S1 and S2. (b) All k-mers are then 
converted to integer fingerprints by multiple hash functions. The number 
of hash functions determines the resulting sketch size H. Here, where  
H = 4, four independent hash sets are generated for each sequence 
('1…H). In MHAP, after the initial hash ('1), subsequent fingerprints are 
generated using an XORShift pseudo-random number generator ('2…H). 
The k-mer generating the minimum value for each hash is referred to as 
the min-mer for that hash. (c) The sketch of a sequence is composed 
of the ordered set of its H min-mer fingerprints, which is much smaller 
than the set of all k-mers. In this example, the sketches of S1 and S2 
share the same minimum fingerprints (underlined) for '1 and '2. (d) The 
fraction of entries shared between the sketches of two sequences S1 and 
S2 (0.5) serves as an estimate of their true Jaccard similarity (0.22), with 
the error bound controlled by H. In practice, H >> 4 is required to obtain 
accurate estimates. (e) If sufficient similarity is detected between two 
sketches, the shared min-mers (ACC and CCG in this case) are located 
in the original sequences and the median difference in their positions is 
computed to determine the overlap offset (0) for S1 and S2.

2) Multiple hash functions  
( Γ ) map kmers to values. 

1) Sequence decomposed 
into kmers

3) The smallest values for 
each hash function is chosen
4) The Jaccard similarity can 
be estimated by the overlap 
in the Minimum Hashes 
(MinHash) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing 

Berlin et al (2015) Nature Biotechnology



MinHash in practice

Mash: fast genome and metagenome distance estimation using MinHash  
Ondov et al (2016) Genome Biology



What if I have a dataset which is much larger than another?

Alternative MinHash Sketch Approaches

S1 = { 1, 3, 40, 59, 82, 101 } 

S2 = { 1, 2, 3, 4, 5, 6, 7, … 59, 82, 101, … } 





Alternative MinHash sketches
Bottom-k minhash has low accuracy if the cardinality of sets are skewed 

Ondov, Brian D., Gabriel J. Starrett, Anna Sappington, Aleksandra Kostic, Sergey Koren, 
Christopher B. Buck, and Adam M. Phillippy. Mash Screen: High-throughput sequence 
containment estimation for genome discovery. Genome biology 20.1 (2019): 1-13.



Alternative MinHash Sketch Approaches
If there is a large cardinality difference, use k-partitions!



K-Partition Minhash

1010110101
0001111010
1101101011
1011010110
0101100000
0010001101

Hash

00
01111010
10001101

01

10

11

01100000

10110101
11010110

01101011

Partition



K-Partition Minhash

1010110101
0001111010 00

10
Partition

Hint: What bitwise operator(s) will allow me to do this?

What information do I need to do this in general?



MP_Sketching: A MinHash experiment
Using legitimate hashes, write MinHash sketch three ways:

std::vector<uint64_t> khash_minhash(std::vector<int> inList, std::vector<hashFunction> hv);


std::vector<uint64_t> kminhash(std::vector<int> inList, unsigned k, hashFunction h);


std::vector<uint64_t> kpartition_minhash(std::vector<int> inList, int part_bits, hashFunction h);




MP_Sketching: A MinHash experiment
Use MinHash sketches to estimate PNG similarity

Mosaics (Discord: Bose) Mosaics (Discord: LightningStorm)



MP_Sketching: A MinHash experiment
Build a weighted graph of every possible pairwise comparison!



The Internet 2003

The OPTE Project (2003)

Nodes: Routers and 
servers

Edges: Connections

https://www.opte.org/the-internet


“Rule of 7”

Unknown Source

Presented by Cinda Heeren, 2016

This graph can be used to quickly calculate 
whether a given number is divisible by 7.


1. Start at the circle node at the top.

2. For each digit d in the given number, follow 
d blue (solid) edges in succession. As you 
move from one digit to the next, follow 1 red 
(dashed) edge.

3. If you end up back at the circle node, your 
number is divisible by 7.


3703



Conflict-Free Final Exam Scheduling Graph

Unknown Source

Presented by Cinda Heeren, 2016



“Rush Hour” Solution

Unknown Source 
Presented by Cinda Heeren, 2016



“Stanford Bunny” 
Greg Turk and Mark Levoy (1994)





Graphs

To study all of these structures:

1. A common vocabulary

2. Graph implementations

3. Graph traversals

4. Graph algorithms




Graph Vocabulary

5

3
6

7

2

1

4

G = (V, E)

Vertex: 

Edges: 

A graph is a data structure containing a set of vertices and a set of edges



Graph Vocabulary
Degree: # of edges touching a vertex

Adjacency: Two vertices are adjacent if they 
are connected by an edge

5

3
6

7

2

1

4

Path: A sequence of vertices (or edges) 
between two nodes



Graph Vocabulary

Cycle: 

A graph has no root and may contain cycles

A path from a node to itself

Terminology Trivia: Every tree is a graph but not every graph is a tree

5

3
6

7

2

1

4

Simple Graph: No self-loops or multi-edges



Graph Vocabulary
Directed: Edges are one way connections

A value associated with an edge

Undirected: Traversable in either direction

Weighted: 

5

3
6

7

2

1

4

1

5

32

1 1

1
9



Graph Vocabulary
G = (V, E)


|V| = n


|E| = m

G1

G2
G3

Subgraph(G): 
G’ = (V’, E’): 
    V’ ∈ V, E’ ∈ E, and 
    (u, v) ∈ E’ ! u ∈ V’, v ∈ V’


Complete subgraph(G)


Connected subgraph(G)


Connected component(G)


Acyclic subgraph(G)


Spanning tree(G)


(2, 5)



Running times are often reported by n, the number of 
vertices, but often depend on m, the number of edges.


How many edges?   Minimum edges: 
                                           Not Connected:


                                           Connected*:


                                   Maximum edges:


                                           Simple:

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

∑
v∈V

deg(v) =



Graph ADT Functions:


- insertVertex(K key);


- insertEdge(Vertex v1, Vertex v2, K key);


- removeVertex(Vertex v);


- removeEdge(Vertex v1, Vertex v2);


- incidentEdges(Vertex v);


- areAdjacent(Vertex v1, Vertex v2);


- origin(Edge e);


- destination(Edge e);

Data:


- Vertices


- Edges


- Some data structure 
maintaining the 
structure between 
vertices and edges.

X

V

W

Z

Y

b

e

d

f
g

h



Graph Implementation Idea

v

u

w

a c

b
z

d



Graph Implementation: Edge List

v

u

w

a c

b
z

d

Vertex Collection:


Edge Collection:u

v

w

z

u v a

v w b

u w c

w z d



Graph Implementation: Edge List

v

u

w

a c

b
z

d

insertVertex(K key): 

removeVertex(Vertex v): u

v

w

z

u v a

v w b

u w c

w z d



Graph Implementation: Edge List

v

u

w

a c

b
z

d

incidentEdges(Vertex v):


areAdjacent(Vertex v1, Vertex v2):


G.incidentEdges(v1).contains(v2)


u

v

w

z

u v a

v w b

u w c

w z d



Graph Implementation: Edge List

v

u

w

a c

b
z

d

insertEdge(Vertex v1, Vertex v2, K key):

u

v

w

z

u v a

v w b

u w c

w z d



Graph Implementation: Edge List
Pros:

Cons:



Graph Implementation: Adjacency Matrix

v

u

w

a c

b
z

d

insertVertex(K key); 
removeVertex(Vertex v); 
areAdjacent(Vertex v1, Vertex v2); 
incidentEdges(Vertex v);


u v w z

u

v

w

z

U

V

W

Z


