# Data Structures and Algorithms Bloom Filters 2

CS 225 Brad Solomon November 3, 2023



Department of Computer Science

## Extra Credit Project Submissions

~110 teams submitted extra credit projects.

Drafted TAs to do a first pass grading of some of the major topics

Each TA-graded project is graded by two TAs for fairness

Mentors will (hopefully) be assigned sometime next week

#### Quick announcements on MPs

MP\_Traversal had the lowest plagiarism rate of any assignment!

MP\_mazes is due next week

The next MP will NOT be released next Monday

#### Quick announcements on Exams

Next exam is next Monday

Look at topic list / do practice exam

Make sure you thoroughly understand the coding question.

## Learning Objectives

Review conceptual understanding of bloom filter

Review probabilistic data structures and explore one-sided error

Formalize the math behind the bloom filter

Discuss bit vector operations and potential extensions to bloom filters

#### Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

#### Constrained by Big Data (Large N)



Google Index Estimate: >60 billion webpages

Google Universe Estimate (2013): >130 trillion webpages

#### Bloom Filter: Insertion

An item is inserted into a bloom filter by hashing and then setting the hash-valued bit to 1

If the bit was already one, it stays 1



#### Bloom Filter: Deletion

Due to hash collisions and lack of information, items cannot be deleted!



#### Bloom Filter: Search

```
S = { 16, 8, 4, 13, 29, 11, 22 } _find(16)
h(k) = k % 7
```

| 0 | 0 |
|---|---|
| 1 | 1 |
| 2 | 1 |
| 3 | 0 |
| 4 | 1 |
| 5 | 0 |
| 6 | 1 |

\_find(20)

\_find(3)

#### Bloom Filter: Search

The bloom filter is a *probabilistic* data structure!

If the value in the BF is 0:

If the value in the BF is 1:



## Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious





## Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

True Positive:

False Positive:

False Negative:

True Negative:

#### Imagine we have a **bloom filter** that **stores malicious sites...**



**Item Inserted** 

**Item NOT inserted** 

# Probabilistic Accuracy: One-sided error



## Probabilistic Accuracy: One-sided error







| $h_1$ | 0<br>1<br>0<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>1<br>0<br>1 | $h_2$ | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>1<br>1<br>1 | 0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>1<br>0<br>1 | $h_3$ |
|-------|---------------------------------------------------------------|-------|---------------------------------------------------------------|-----------------------------------------------------|-------|
|       | 0                                                             |       | 1                                                             | 0                                                   |       |
|       | 1                                                             |       | 0                                                             | 1                                                   |       |
|       | 0                                                             |       | 0                                                             | 0                                                   |       |
|       | 1                                                             |       | 1                                                             | 1                                                   |       |
|       | 0                                                             |       | 0                                                             | 0                                                   |       |
|       | 1                                                             |       | 0                                                             | 1                                                   |       |

|       | 0 |       | 0 |       | 0 |         | 0 |
|-------|---|-------|---|-------|---|---------|---|
|       | 1 |       | 0 |       | 1 |         | 1 |
|       | 0 |       | 0 |       | 1 |         | 1 |
|       | 1 |       | 1 |       | 1 |         | 1 |
|       | 0 |       | 0 |       | 0 |         | 1 |
|       | 0 |       | 0 |       | 0 |         | 1 |
|       | 0 |       | 0 |       | 1 |         | 0 |
|       | 1 |       | 1 |       | 1 | _       | 0 |
| $h_1$ | 0 | $h_2$ | 0 | $h_3$ | 0 | $- h_k$ | 0 |
|       | 1 | 12    | 1 | 113   | 1 | r k     |   |
|       | 1 |       | 0 |       | 1 |         | 0 |
|       | 0 |       | 0 |       | 0 |         | 1 |
|       | 1 |       | 1 |       | 1 |         | 0 |
|       | 0 |       | 1 |       | 0 |         | 0 |
|       | 1 |       | 1 |       | 1 |         | 1 |
|       | 1 |       | 0 |       | 1 |         | 1 |
|       | 0 |       | 0 |       | 0 |         | 1 |
|       | 1 |       | 1 |       | 1 |         | 1 |
|       | 0 |       | 0 |       | 0 |         | 1 |
|       | 1 |       | 0 |       | 1 |         | 1 |

| 0 |  |
|---|--|
| 1 |  |
| 0 |  |
| 1 |  |
| 0 |  |
| 0 |  |
| 0 |  |
| 1 |  |
| 0 |  |
| 1 |  |
| 1 |  |
| 0 |  |
| 1 |  |
| 0 |  |
| 1 |  |
| 1 |  |
| 0 |  |
| 1 |  |
| 0 |  |
| 1 |  |
|   |  |

| 0 |
|---|
| 0 |
| 0 |
| 1 |
| 0 |
| 0 |
| 0 |
| 1 |
| 0 |
| 1 |
| 0 |
| 0 |
| 1 |
| 1 |
| 1 |
| 0 |
| 0 |
| 1 |
| 0 |
| Λ |

| 0 |
|---|
| 1 |
| 1 |
| 1 |
| 0 |
| 0 |
| 1 |
| 1 |
| 0 |
| 1 |
| 1 |
| 0 |
| 1 |
| 0 |
| 1 |
| 1 |
| 0 |
| 1 |
| 0 |
| 1 |

$$h_{\{1,2,3,...,k\}}(y)$$





Using repeated trials, even a very bad filter can still have a very low FPR!

If we have k bloom filter, each with a FPR p, what is the likelihood that **all** filters return the value '1' for an item we didn't insert?

But doesn't this hurt our storage costs by storing k separate filters?

|       |   |         |   | ī       |   | 1        |   |
|-------|---|---------|---|---------|---|----------|---|
|       | 0 |         | 0 |         | 0 |          | 0 |
|       | 1 |         | 0 |         | 1 |          | 1 |
|       | 0 |         | 0 |         | 1 |          | 1 |
|       | 1 |         | 1 |         | 1 |          | 1 |
|       | 0 |         | 0 |         | 0 |          | 1 |
|       | 0 |         | 0 |         | 0 |          | 1 |
|       | 0 |         | 0 |         | 1 |          | 0 |
|       | 1 |         | 1 |         | 1 |          | 0 |
| $h_1$ | 0 | $h_{-}$ | 0 | $h_{-}$ | 0 | $$ $h_1$ |   |
|       | 1 | $h_2$   | 1 | $h_3$   | 1 | $ h_k$   | 0 |
|       | 1 |         | 0 |         | 1 |          | 0 |
|       | 0 |         | 0 |         | 0 |          | 1 |
|       | 1 |         | 1 |         | 1 |          | 0 |
|       | 0 |         | 1 |         | 0 |          | 0 |
|       | 1 |         | 1 |         | 1 |          | 1 |
|       | 1 |         | 0 |         | 1 |          | 1 |
|       | 0 |         | 0 |         | 0 |          | 1 |
|       | 1 |         | 1 |         | 1 |          | 1 |
|       | 0 |         | 0 |         | 0 |          | 1 |
|       | 1 |         | 0 |         | 1 |          | 1 |
|       |   |         |   | I       |   |          |   |

Rather than use a new filter for each hash, one filter can use k hashes



$$S = \{ 6, 8, 4 \}$$

$$h_1(x) = x \% 10$$

$$h_2(x) = 2x \% 10$$

$$h_3(x) = (5+3x) \% 10$$

Rather than use a new filter for each hash, one filter can use k hashes

 $h_3(x) = (5+3x) \% 10$ 



#### **Bloom Filter**



A probabilistic data structure storing a set of values

 $H = \{h_1, h_2, \ldots, h_k\}$ 

Built from a bit vector of length m and k hash functions

0

Insert / Find runs in: \_\_\_\_\_

0

1

0

1

0

 $\mathbf{C}$ 

Delete is not possible (yet)!

 $h_{\{1,2,3,...,k\}}$ 

Given bit vector of size m and k SUHA hash function

What is our expected FPR after n objects are inserted?



Given bit vector of size m and 1 SUHA hash function

What's the probability a specific bucket is 1 after one object is inserted?

Same probability given k SUHA hash function?



 $h_{\{1,2,3,...,k\}}$ 

Given bit vector of size m and k SUHA hash function

Probability a specific bucket is 0 after one object is inserted?

W

After *n* objects are inserted?

Given bit vector of size m and k SUHA hash function

What's the probability a specific bucket is 1 after n objects are inserted?



m

Given bit vector of size m and k SUHA hash function

#### What is our expected FPR after n objects are inserted?

The probability my bit is 1 after *n* objects inserted

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

The number of [assumed independent] trials



Vector of size m, k SUHA hash function, and n objects

To minimize the FPR, do we prefer...

(A) large k

(B) small k

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$



Vector of size m, k SUHA hash function, and n objects

(A) large k

(B) small k

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

As *k* increases, this gets smaller!

As *k* decreases, this gets smaller!

## Bloom Filter: Optimal Error Rate

To build the optimal hash function, fix **m** and **n**!

**Claim:** The optimal hash function is when  $k^* = \ln 2 \cdot \frac{m}{n}$ 

$$(1) \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$$

(2) 
$$\frac{d}{dk} \left( 1 - e^{\frac{-nk}{m}} \right)^k \approx \frac{d}{dk} \left( k \ln(1 - e^{\frac{-nk}{m}}) \right)$$

## Bloom Filter: Optimal Error Rate

Claim 1: 
$$\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$$

$$\left(1 - \frac{1}{m}\right)^{nk} = e^{\ln\left[\left(1 - \frac{1}{m}\right)^{nk}\right]}$$

$$= e^{\ln\left[\left(1 - \frac{1}{m}\right)\right]nk}$$

$$pprox e^{\frac{-nk}{m}}$$

## Bloom Filter: Optimal Error Rate

Claim 2: 
$$\frac{d}{dk} \left( 1 - e^{\frac{-nk}{m}} \right)^k \approx \frac{d}{dk} \left( k \ln(1 - e^{\frac{-nk}{m}}) \right)$$

Fact: 
$$\frac{d}{dx} \ln f(x) = \frac{1}{f(x)} \frac{df(x)}{dx}$$

**TL;DR:** 
$$min [f(x)] = min [ln f(x)]$$

Derivative is zero when  $k^* = \ln 2 \cdot \frac{m}{n}$ 

#### Bloom Filter: Error Rate





# Bloom Filter: Optimal Parameters

$$k^* = \ln 2 \cdot \frac{m}{n}$$

 $\left|k^* = \ln 2 \cdot \frac{m}{n}\right|$  Given any two values, we can optimize the third

$$n = 100$$
 items  $k = 3$  hashes

$$k=3$$
 hashes

$$m =$$

$$m = 100$$
 bits  $n = 20$  items

$$n=20$$
 items

$$k =$$

$$m = 100$$
 bits  $k = 2$  items

$$k=2$$
 items

$$n =$$

### Bloom Filter: Optimal Parameters

$$m = \frac{nk}{\ln 2} \approx 1.44 \cdot nk$$

Optimal hash function is still O(m)!



n = 250,000 files vs ~ $10^{15}$  nucleotides vs 260 TB



n = 60 billion — 130 trillion

### Bloom Filter: Website Caching





### Bitwise Operators in C++

Traditionally, bit vectors are read from RIGHT to LEFT

Warning: Lab\_Bloom won't do this but MP\_Sketching will!



## Bitwise Operators in C++

Let **A** = 10110 Let **B** = 01110

~B:

A & B:

A | B:

A >> 2:

B << 2:

## Bit Vectors: Unioning

Bit Vectors can be trivially merged using bit-wise union.

| 0 | 1 |   | 0 | 0 |   | 0 |  |
|---|---|---|---|---|---|---|--|
| 1 | 0 |   | 1 | 1 |   | 1 |  |
| 2 | 1 |   | 2 | 1 |   | 2 |  |
| 3 | 1 |   | 3 | 0 |   | 3 |  |
| 4 | 0 | U | 4 | 0 | = | 4 |  |
| 5 | 0 |   | 5 | 0 |   | 5 |  |
| 6 | 1 |   | 6 | 1 |   | 6 |  |
| 7 | 0 |   | 7 | 1 |   | 7 |  |
| 8 | 0 |   | 8 | 1 |   | 8 |  |
| 9 | 1 |   | 9 | 1 |   | 9 |  |

#### Bit Vectors: Intersection

Bit Vectors can be trivially merged using bit-wise intersection.

| 0 | 1 |   | 0 | 0 |   | 0 |  |
|---|---|---|---|---|---|---|--|
| 1 | 0 |   | 1 | 1 |   | 1 |  |
| 2 | 1 |   | 2 | 1 |   | 2 |  |
| 3 | 1 |   | 3 | 0 |   | 3 |  |
| 4 | 0 | U | 4 | 0 | = | 4 |  |
| 5 | 0 |   | 5 | 0 |   | 5 |  |
| 6 | 1 |   | 6 | 1 |   | 6 |  |
| 7 | 0 |   | 7 | 1 |   | 7 |  |
| 8 | 0 |   | 8 | 1 |   | 8 |  |
| 9 | 1 |   | 9 | 1 |   | 9 |  |

## Bit Vector Merging

What is the conceptual meaning behind union and intersection?

Imagine we have a large collection of text...



And our goal is to search these files for a query of interest...









|           | SRA     | FASTA.gz | SBT    |
|-----------|---------|----------|--------|
| Leaves    | 4966 GB | 2692 GB  | 63 GB  |
| Full Tree | -       | -        | 200 GB |

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." *Nature biotechnology* 34.3 (2016): 300-302.

Solomon, Brad, and Carl Kingsford. "Improved search of large transcriptomic sequencing databases using split sequence bloom trees." *International Conference on Research in Computational Molecular Biology*. Springer, Cham, 2017.

Sun, Chen, et al. "Allsome sequence bloom trees." *International Conference on Research in Computational Molecular Biology*. Springer, Cham, 2017.

Harris, Robert S., and Paul Medvedev. "Improved representation of sequence bloom trees." *Bioinformatics* 36.3 (2020): 721-727.

## Bloom Filters: Tip of the Iceberg



Cohen, Saar, and Yossi Matias. "Spectral bloom filters." *Proceedings of the 2003 ACM SIGMOD international conference on Management of data*. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." *Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies*. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient Counting Bloom Filter." 2021 17th International Conference on Network and Service Management (CNSM). IEEE, 2021.

Mitzenmacher, Michael. "Compressed bloom filters." *IEEE/ACM transactions on networking* 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." *Information Systems* 54 (2015): 311-324.

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." *Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms*. 2004.

There are many more than shown here...