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Extra Credit Project Submissions

~110 teams submitted extra credit projects.

Drafted TAs to do a first pass grading of some of the major topics

Each TA-graded project is graded by two TAs for fairness

Mentors will (hopefully) be assigned sometime next week




Quick announcements on MPs

MP_Traversal had the lowest plagiarism rate of any assignment!

MP_mazes is due next week

The next MP will NOT be released next Monday




Quick announcements on Exams

Next exam is next Monday

Look at topic list / do practice exam

Make sure you thoroughly understand the coding question.




Learning Objectives

Review conceptual understanding of bloom filter

Review probabilistic data structures and explore one-sided error
Formalize the math behind the bloom filter

Discuss bit vector operations and potential extensions to bloom filters




Memory-Constrained Data Structures

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Constrained by Big Data (Large NN)
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Bloom Filter: Insertion

An item is inserted into a bloom filter by hashing
and then setting the hash-valued bit to 1

If the bit was already one, it stays 1
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Bloom Filter: Deletion

Due to hash collisions and lack of information,
items cannot be deleted!
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Bloom Filter: Search

S={16,8,4,13,29,11,22} ~£find (16)
h(k) =k % 7
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Bloom Filter: Search @

H
The bloom filter is a probabilistic data structure! 0 (@)
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If the value in the BF is O: 1
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Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

$ CS 225 —_— —p “Not malicious”
. Introduction to Data Structures and Algorithms with C++

A

The site ahead contains harmful programs
Attackers on softwarez.us might attempt to trick you into installing programs that harm ll ° [ ’,
your browsing experience (for example, by changing your homepage or showing extra ads ﬁ ﬁ M a I ( I O ' l S
on sites you visit). 1]
Help improve Safe Browsing by sending some system information and page content to .
Privacy
Back to safet




Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

True Positive:
False Positive:
False Negative:

True Negative:




Imagine we have a bloom filter that stores malicious sites...

Bit Value =1 BitValue=0

Item Inserted

Item NOT inserted

False Positive True Negative




Probabilistic Accuracy: One-sided error

Query: '

Dataset:

search with one-
sided error

We will get some False Positives: '_’

We will NEVER have a False Negative: ’#’




Probabilistic Accuracy: One-sided error

search with one-
sided error

search with one-
sided error




Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter




Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter
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Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter
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' Repeated Trials
Use many hashes/filters; add each item to each filter
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Bloom Filter



h{1,2,3,...,k}()’)
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h{1,2,3,...,k}()’)
If any query yields 0,
item is not in the set
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Bloom Filter: Repeated Trials



Bloom Filter: Repeated Trials

0 0 0 0

1 0 1 1
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1 1 1 1 h{l 2 3,...,k}(Z)

1 0 1

0 0 0

1 1 1

0 1 0 0 . . .

: : : +If all queries yield 1, item
1 0 1 o

0 0 0 , may be in the set; or we

1 1 1 1 . . o

. - . . might have collided k times
1 0 1 1




Bloom Filter: Repeated Trials

Using repeated trials, even a very bad filter can still have a very low FPR!

If we have k bloom filter, each with a FPR p, what is the likelihood that all
filters return the value ‘1" for an item we didn't insert?
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Bloom Filter: Repeated Trials

Rather than use a new filter for each hash, one filter can use k hashes
$S={6,8,4}
hi(X)=x% 10 ho(X)=2x% 10 h3(x) =(5+3x) % 10
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Bloom Filter: Repeated Trials

Rather than use a new filter for each hash, one filter can use k hashes

o 0 hi(x)=x% 10 ha(x) =2x% 10 h3(x) =(5+3x) % 10
1 0

2 1 _find (1)

3 1

4 1

5 0

> £find (16)

7 1 —

8 1

9 1




Bloom Filter @

o . H={h1,h2,...,hk}
A probabilistic data structure storing a set of values

Built from a bit vector of length m and k hash functions

Insert / Find runs in:

Delete is not possible (yet)!
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Bloom Filter: Error Rate hiios.

Given bit vector of size m and k SUHA hash function

What is our expected FPR after 1 objects are inserted?




Bloom Filter: Error Rate

Given bit vector of size m and 1 SUHA hash function

What's the probability a specific bucket is 1 after
one object is inserted?

Same probability given £ SUHA hash function?

hiios.. 0




Bloom Filter: Error Rate hiios.

Given bit vector of size m and k SUHA hash function

Probability a specific bucket is O after one object is inserted?

After n objects are inserted?




Bloom Filter: Error Rate hiios.

Given bit vector of size m and k SUHA hash function

What's the probability a specific bucket is 1 after
n objects are inserted?




Bloom Filter: Error Rate

Given bit vector of size m and k SUHA hash function

What is our expected FPR after 1 objects are inserted?

The probability my bit is 1 after n objects inserted

k
( 1>nk
1—(1-—
m

The number of [assumed independent] trials

h{ 1,2,3,....k}



Bloom Filter: Error Rate hiios.

Vector of size m, k SUHA hash function, and n objects

To minimize the FPR, do we prefer...

(A) large k (B) small £ m

1 nk
1-(1--)
m

k




Bloom Filter: Error Rate

Vector of size m, k SUHA hash function, and n objects

(A) large k (B) small £

(-(-2)) (-(-2))

As kincreases, this gets smaller! As k decreases, this gets smaller!




Bloom Filter: Optimal Error Rate

To build the optimal hash function, fix m and n!

m
Claim: The optimal hash functioniswhen k* = [n 2 - —
n

2) % (1 _ e‘n?k)k ~ % <k In(1 — e‘n’i"))




Bloom Filter: Optimal Error Rate

1 nk k k
Claim1: { 1 -1 -—— z<1—e_7nk>
m




Bloom Filter: Optimal Error Rate

d —n k d —-n
Claim2: — (1 — eTk) N — <k In(1 — 67k)>
dk dk

1 df(x)
f(x) dx

Fact: Eln f(x) =

TL;DR: min [f(x)] = min [ln f(x)]

m
Derivative is zero when k* = 1In2 - —
n



Bloom Filter: Error Rate

m/n =10

k*=In2 .10 = 6.93

Figure by Ben Langmead



Bloom Filter: Optimal Parameters

m
k* =1In2 -—| Given any two values, we can optimize the third

n
n=100items & = 3 hashes m =
m = 100 bits n = 20 items k =

m = 100 bits k = 2 items n=




Bloom Filter: Optimal Parameters

k
m = RS ~ 1.44 - nk| Optimal hash function is still O(m)!

In2

- n = 250,000 files vs ~1075 nucleotides vs 260 TB

M e
~

1000 Genomes Project

Defining Genetic Variatiorr in People
S

**  n=60 billion — 130 trillion




Bloom Filter: Website Caching

Loaded this before?

Cache this page!

Add to filter (but don't cachel)
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Maggs, Bruce M., and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer Communication Review 45.3 (2015): 52-66.



Bitwise Operators in C++

Traditionally, bit vectors are read from RIGHT to LEFT

Warning: Lab_Bloom won’t do this but MP_Sketching will!




Bitwise Operators in C++
lLetA=10110 LetB=01110

A >> 2:

B << 2:




Bit Vectors: Unioning

Bit Vectors can be trivially merged using bit-wise union.

0 1 0O O 0
1 0 1 1 1
2 1 2 1 2
3 1 3 0 3
4 0 U 24 o — 4
5 O 5 0 5
6 1 6 1 6
7 0 7 1 7
8 0 8 1 8
9 1 9 1 9




Bit Vectors: Intersection

Bit Vectors can be trivially merged using bit-wise intersection.

0 1 0O O 0
1 0 1 1 1
2 1 2 1 2
3 1 3 0 3
4 0 U 24 o — 4
5 O 5 0 5
6 1 6 1 6
7 0 7 1 7
8 0 8 1 8
9 1 9 1 9




Bit Vector Merging

What is the conceptual meaning behind union and intersection?




Sequence Bloom Trees

Imagine we have a large collection of text...

TGCTAATAAACCUAGTGATG

| for a query of interest...
CGATAGCACAGGTAGATCC

TACGTAGAGGTCATTAGCC

%-. ATGGTTAGAATTAMCCCGG | And our goal is to search these files

] TACGTAGAGGTCATTAGCCG
— TGCTAATAAACCUAGTGATG




Sequence Bloom Trees

SRA 00001 SRA 00002 SRA 00003 SRAO00004 SRAO00005 SRAO00006 SRAO00007 SRA 00008



Sequence Bloom Trees

Are > B fraction of query
kmers e this Bloom filter?

*
*
k

If YES, move to children

Bloom filter
I If NO, stop looking

at this subtree
LLLILL] (Global mismatch)

f X )

HNEEEEnEEEEEEnEEEEEEn NS EEEEEEeEEEEEEEEEEEEEEEEEEEn
SRA 00001 SRA 00002 SRA 00003 SRAO00004 SRAO00005 SRAO00006 SRAO00007 SRA 00008

X X X X X X X




Sequence Bloom Trees

Time (min)

107

10°

10°

SRA

FASTA.gz

SBT

>2.5 years
Leaves | 4966 GB | 2692 GB | 63 GB
i NIH Full Tree - - 200 GB
cluster
>2 days . Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read
S|ng|e sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.
i CPU Solomon, Brad, and Carl Kingsford. "Improved search of large transcriptomic
l sequencing databases using split sequence bloom trees." International
Conference on Research in Computational Molecular Biology. Springer, Cham,
- 19 2017.
mins .
Sun, Chen, et al. "Allsome sequence bloom trees." International Conference
._ on Research in Computational Molecular Biology. Springer, Cham, 2017.
Q\ Q~ ’ & «
\((\ Q‘b S V?* Harris, Robert S., and Paul Medvedev. "Improved representation of sequence
Q\B\ & D bloom trees." Bioinformatics 36.3 (2020): 721-727.
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Bloom Filters: Tip of the Iceberg
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There are many more than shown here...



