Data Structures and Algorithms Bloom Filters 2

CS 225 Brad Solomon November 3, 2023

Department of Computer Science

Extra Credit Project Submissions

~110 teams submitted extra credit projects.

Drafted TAs to do a first pass grading of some of the major topics

Each TA-graded project is graded by two TAs for fairness

Mentors will (hopefully) be assigned sometime next week

Quick announcements on MPs

MP_Traversal had the lowest plagiarism rate of any assignment!

MP_mazes is due next week

The next MP will NOT be released next Monday

Quick announcements on Exams

Next exam is next Monday

Look at topic list / do practice exam

Make sure you thoroughly understand the coding question.

Learning Objectives

Review conceptual understanding of bloom filter

Review probabilistic data structures and explore one-sided error

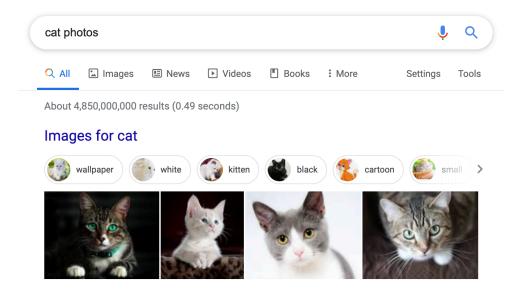
Formalize the math behind the bloom filter

Discuss bit vector operations and potential extensions to bloom filters

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Constrained by Big Data (Large N)



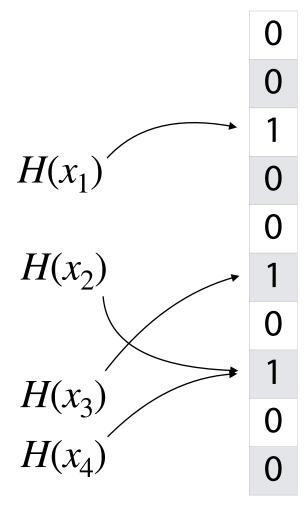
Google Index Estimate: >60 billion webpages

Google Universe Estimate (2013): >130 trillion webpages

Bloom Filter: Insertion

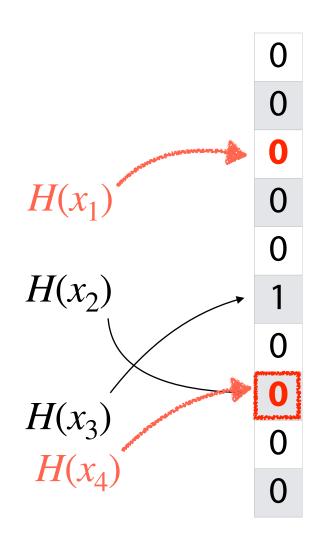
An item is inserted into a bloom filter by hashing and then setting the hash-valued bit to 1

If the bit was already one, it stays 1



Bloom Filter: Deletion

Due to hash collisions and lack of information, items cannot be deleted!



Bloom Filter: Search

```
S = { 16, 8, 4, 13, 29, 11, 22 } _find(16)
h(k) = k % 7
```

0	0
1	1
2	1
3	0
4	1
5	0
6	1

_find(20)

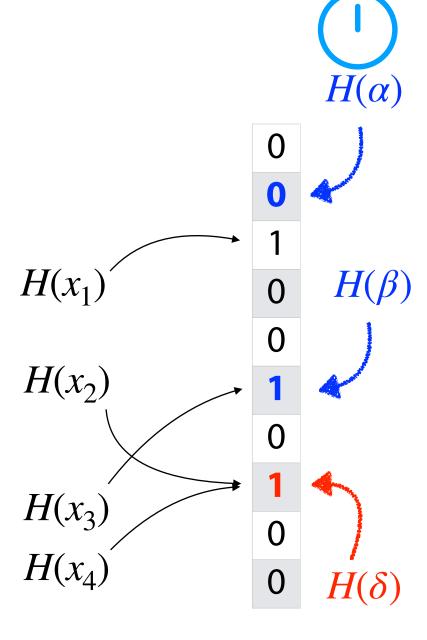
_find(3)

Bloom Filter: Search

The bloom filter is a *probabilistic* data structure!

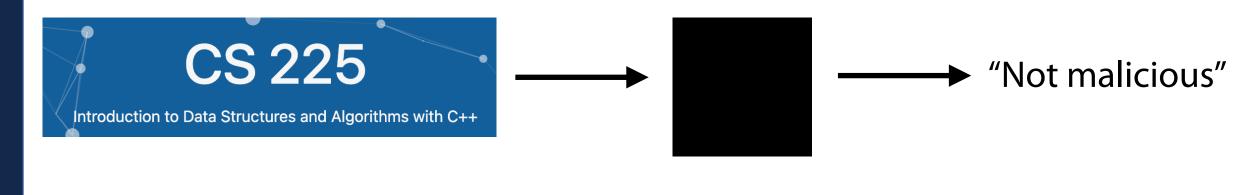
If the value in the BF is 0:

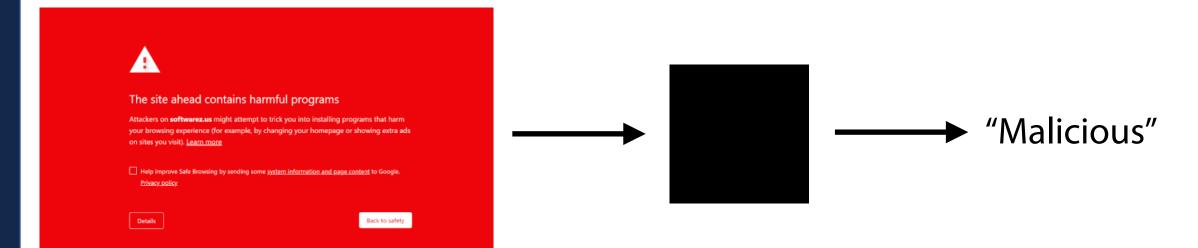
If the value in the BF is 1:



Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious





Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

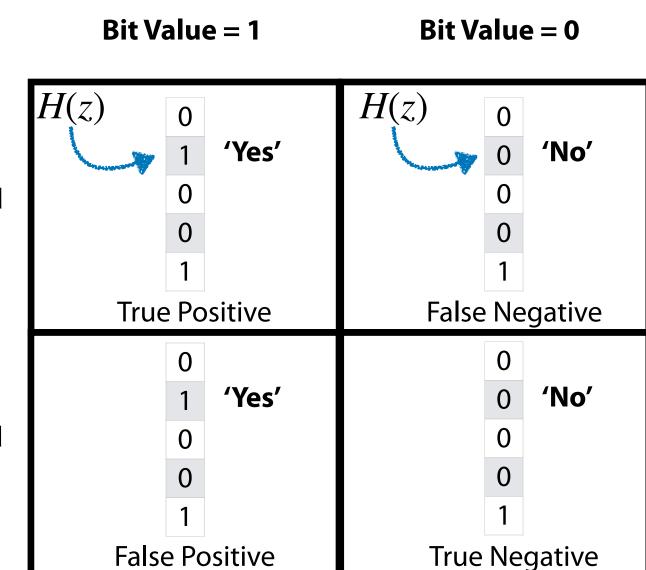
True Positive:

False Positive:

False Negative:

True Negative:

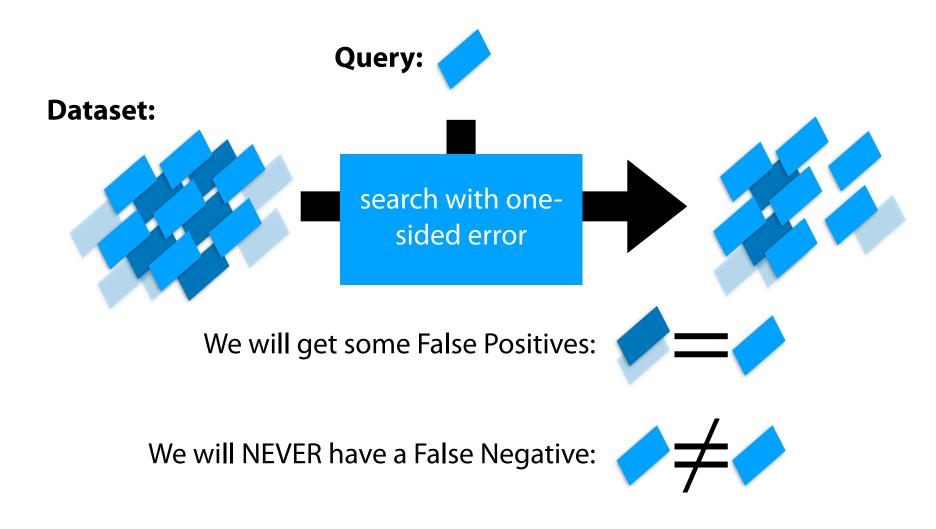
Imagine we have a **bloom filter** that **stores malicious sites...**



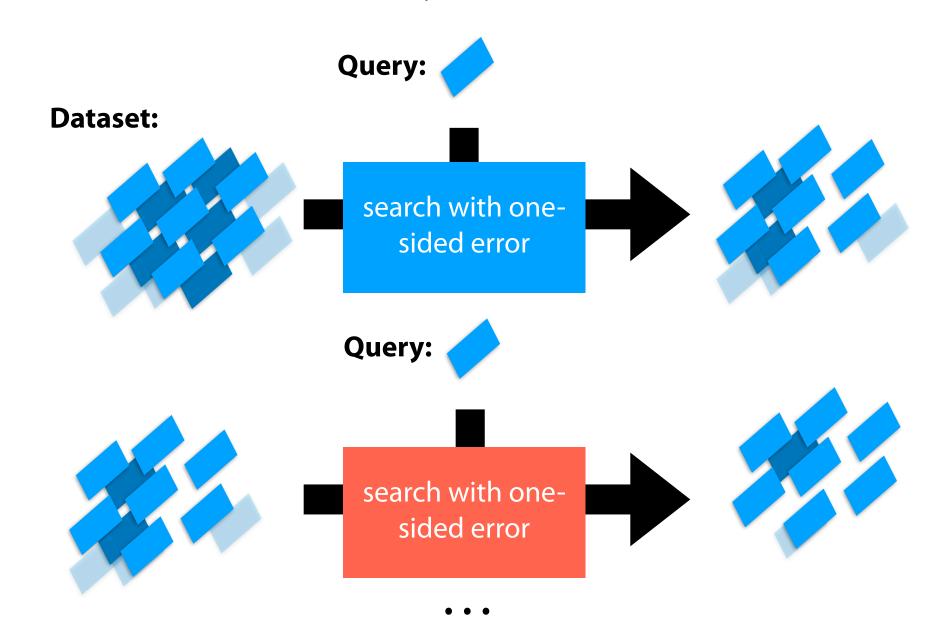
Item Inserted

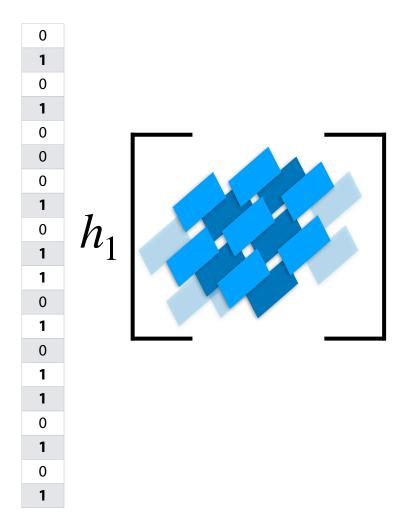
Item NOT inserted

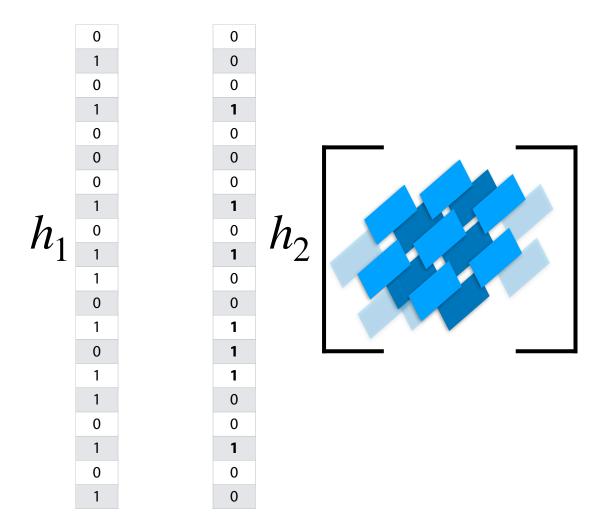
Probabilistic Accuracy: One-sided error



Probabilistic Accuracy: One-sided error







h_1	0 1 0 1 0 0 0 1 1 0 1 0 1	h_2	0 0 0 1 0 0 0 1 0 0 1 1 1	0 1 1 0 0 1 1 0 1 0 1	h_3
	0		1	0	
	1		0	1	
	0		0	0	
	1		1	1	
	0		0	0	
	1		0	1	

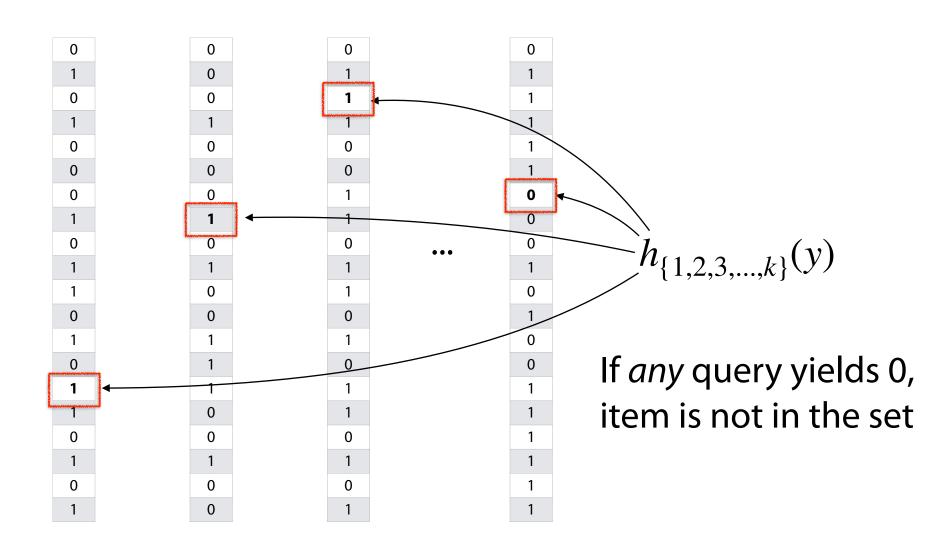
	0		0		0		0
	1		0		1		1
	0		0		1		1
	1		1		1		1
	0		0		0		1
	0		0		0		1
	0		0		1		0
	1		1		1	_	0
h_1	0	h_2	0	h_3	0	$- h_k$	0
	1	12	1	113	1	r k	
	1		0		1		0
	0		0		0		1
	1		1		1		0
	0		1		0		0
	1		1		1		1
	1		0		1		1
	0		0		0		1
	1		1		1		1
	0		0		0		1
	1		0		1		1

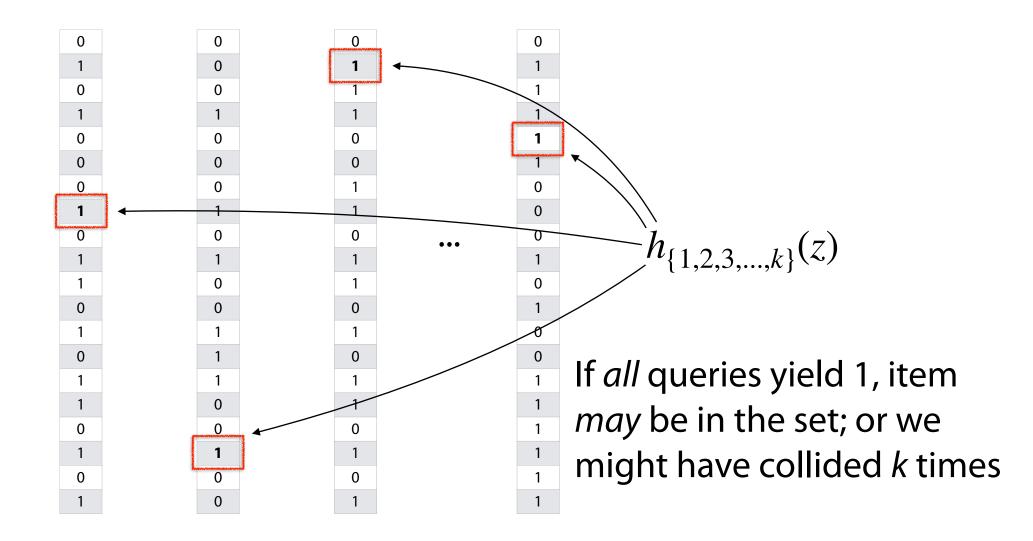
0	
1	
0	
1	
0	
0	
0	
1	
0	
1	
1	
0	
1	
0	
1	
1	
0	
1	
0	
1	

0
0
0
1
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
Λ

0
1
1
1
0
0
1
1
0
1
1
0
1
0
1
1
0
1
0
1

$$h_{\{1,2,3,...,k\}}(y)$$





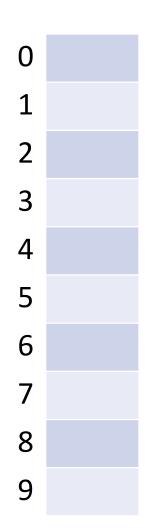
Using repeated trials, even a very bad filter can still have a very low FPR!

If we have k bloom filter, each with a FPR p, what is the likelihood that **all** filters return the value '1' for an item we didn't insert?

But doesn't this hurt our storage costs by storing k separate filters?

				ī		1	
	0		0		0		0
	1		0		1		1
	0		0		1		1
	1		1		1		1
	0		0		0		1
	0		0		0		1
	0		0		1		0
	1		1		1		0
h_1	0	h_{-}	0	h_{-}	0	$$ h_1	
	1	h_2	1	h_3	1	$ h_k$	0
	1		0		1		0
	0		0		0		1
	1		1		1		0
	0		1		0		0
	1		1		1		1
	1		0		1		1
	0		0		0		1
	1		1		1		1
	0		0		0		1
	1		0		1		1
				I			

Rather than use a new filter for each hash, one filter can use k hashes



$$S = \{ 6, 8, 4 \}$$

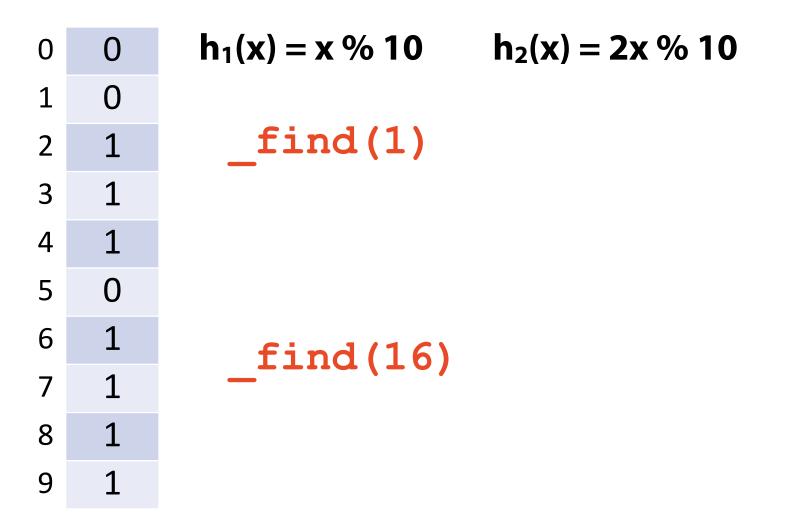
$$h_1(x) = x \% 10$$

$$h_2(x) = 2x \% 10$$

$$h_3(x) = (5+3x) \% 10$$

Rather than use a new filter for each hash, one filter can use k hashes

 $h_3(x) = (5+3x) \% 10$



Bloom Filter

A probabilistic data structure storing a set of values

 $H = \{h_1, h_2, \ldots, h_k\}$

Built from a bit vector of length m and k hash functions

0

Insert / Find runs in: _____

0

1

0

1

0

 \mathbf{C}

Delete is not possible (yet)!

 $h_{\{1,2,3,...,k\}}$

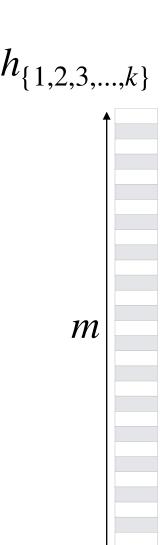
Given bit vector of size m and k SUHA hash function

What is our expected FPR after n objects are inserted?

Given bit vector of size m and 1 SUHA hash function

What's the probability a specific bucket is 1 after one object is inserted?

Same probability given k SUHA hash function?



 $h_{\{1,2,3,...,k\}}$

Given bit vector of size m and k SUHA hash function

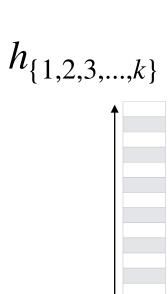
Probability a specific bucket is 0 after one object is inserted?

W

After *n* objects are inserted?

Given bit vector of size m and k SUHA hash function

What's the probability a specific bucket is 1 after n objects are inserted?



m

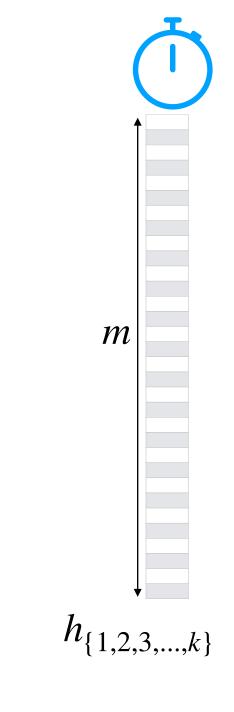
Given bit vector of size m and k SUHA hash function

What is our expected FPR after n objects are inserted?

The probability my bit is 1 after *n* objects inserted

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

The number of [assumed independent] trials



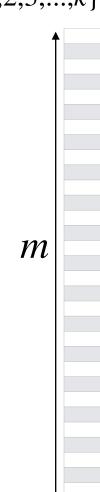
Vector of size m, k SUHA hash function, and n objects

To minimize the FPR, do we prefer...

(A) large k

(B) small k

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$



Vector of size m, k SUHA hash function, and n objects

(A) large k

(B) small k

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

As *k* increases, this gets smaller!

As *k* decreases, this gets smaller!

Bloom Filter: Optimal Error Rate

To build the optimal hash function, fix **m** and **n**!

Claim: The optimal hash function is when $k^* = \ln 2 \cdot \frac{m}{n}$

$$(1) \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$$

(2)
$$\frac{d}{dk} \left(1 - e^{\frac{-nk}{m}} \right)^k \approx \frac{d}{dk} \left(k \ln(1 - e^{\frac{-nk}{m}}) \right)$$

Bloom Filter: Optimal Error Rate

Claim 1:
$$\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$$

$$\left(1 - \frac{1}{m}\right)^{nk} = e^{\ln\left[\left(1 - \frac{1}{m}\right)^{nk}\right]}$$

$$= e^{\ln\left[\left(1 - \frac{1}{m}\right)\right]nk}$$

$$pprox e^{\frac{-nk}{m}}$$

Bloom Filter: Optimal Error Rate

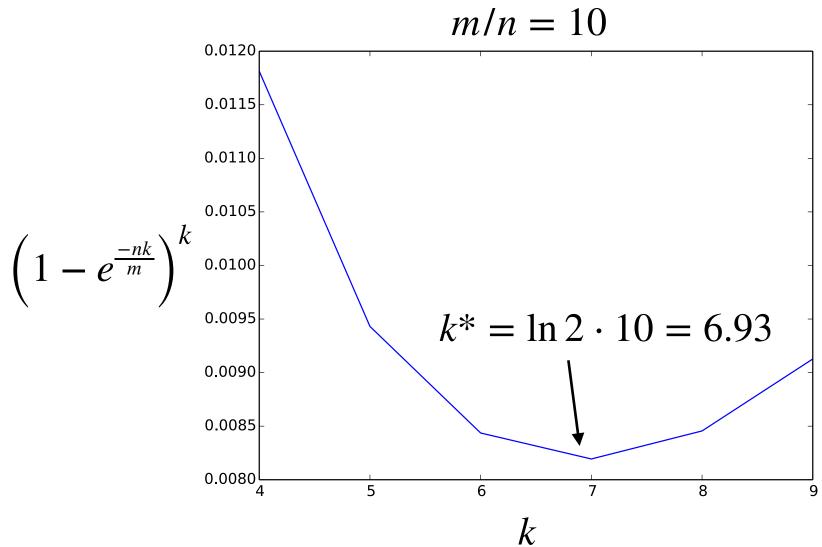
Claim 2:
$$\frac{d}{dk} \left(1 - e^{\frac{-nk}{m}} \right)^k \approx \frac{d}{dk} \left(k \ln(1 - e^{\frac{-nk}{m}}) \right)$$

Fact:
$$\frac{d}{dx} \ln f(x) = \frac{1}{f(x)} \frac{df(x)}{dx}$$

TL;DR:
$$min [f(x)] = min [ln f(x)]$$

Derivative is zero when $k^* = \ln 2 \cdot \frac{m}{n}$

Bloom Filter: Error Rate



Bloom Filter: Optimal Parameters

$$k^* = \ln 2 \cdot \frac{m}{n}$$

 $\left|k^* = \ln 2 \cdot \frac{m}{n}\right|$ Given any two values, we can optimize the third

$$n = 100$$
 items $k = 3$ hashes

$$k=3$$
 hashes

$$m =$$

$$m = 100$$
 bits $n = 20$ items

$$n=20$$
 items

$$k =$$

$$m = 100$$
 bits $k = 2$ items

$$k=2$$
 items

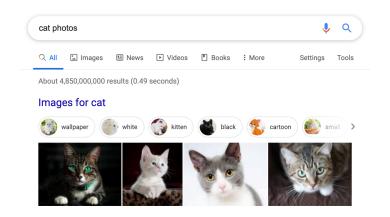
$$n =$$

Bloom Filter: Optimal Parameters

$$m = \frac{nk}{\ln 2} \approx 1.44 \cdot nk$$

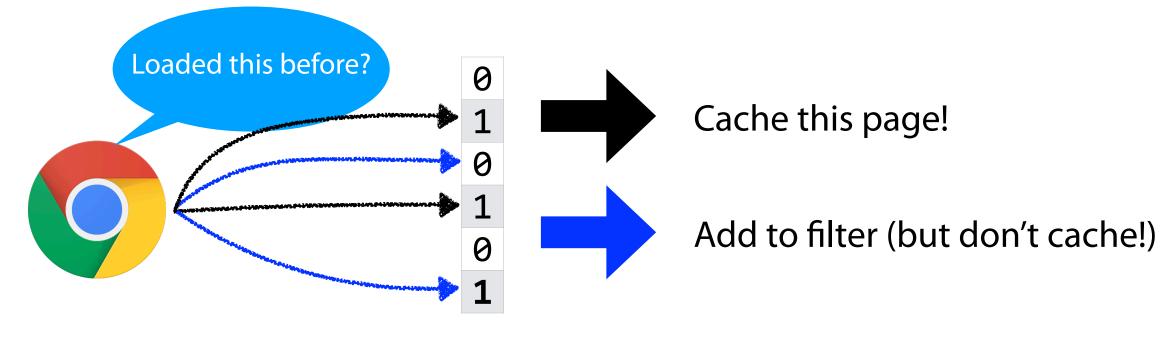
Optimal hash function is still O(m)!

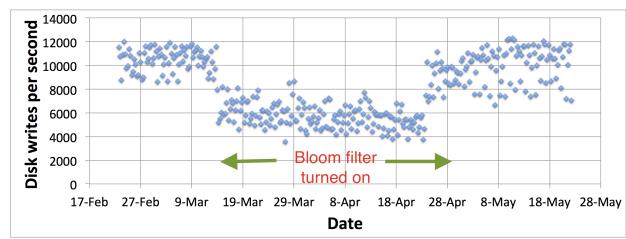
n = 250,000 files vs ~ 10^{15} nucleotides vs 260 TB



n = 60 billion — 130 trillion

Bloom Filter: Website Caching

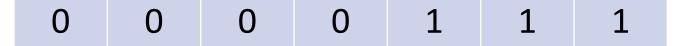




Bitwise Operators in C++

Traditionally, bit vectors are read from RIGHT to LEFT

Warning: Lab_Bloom won't do this but MP_Sketching will!



Bitwise Operators in C++

Let **A** = 10110 Let **B** = 01110

~B:

A & B:

A | B:

A >> 2:

B << 2:

Bit Vectors: Unioning

Bit Vectors can be trivially merged using bit-wise union.

0	1		0	0		0	
1	0		1	1		1	
2	1		2	1		2	
3	1		3	0		3	
4	0	U	4	0	=	4	
5	0		5	0		5	
6	1		6	1		6	
7	0		7	1		7	
8	0		8	1		8	
9	1		9	1		9	

Bit Vectors: Intersection

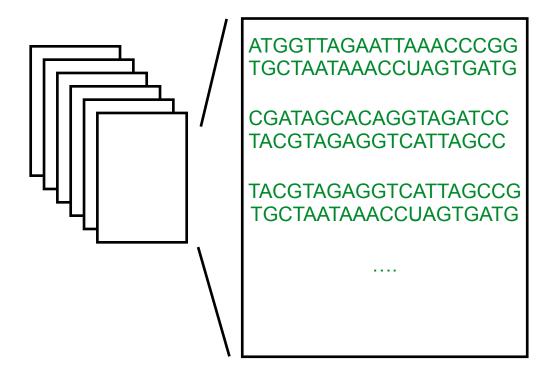
Bit Vectors can be trivially merged using bit-wise intersection.

0	1		0	0		0	
1	0		1	1		1	
2	1		2	1		2	
3	1		3	0		3	
4	0	U	4	0	=	4	
5	0		5	0		5	
6	1		6	1		6	
7	0		7	1		7	
8	0		8	1		8	
9	1		9	1		9	

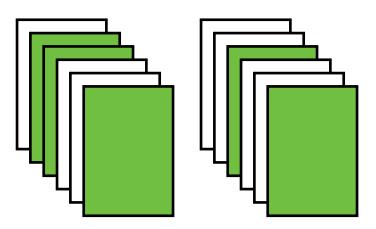
Bit Vector Merging

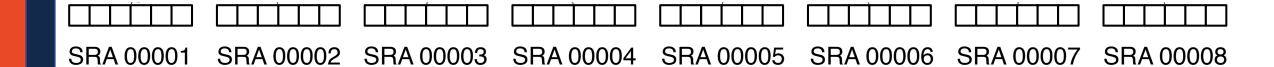
What is the conceptual meaning behind union and intersection?

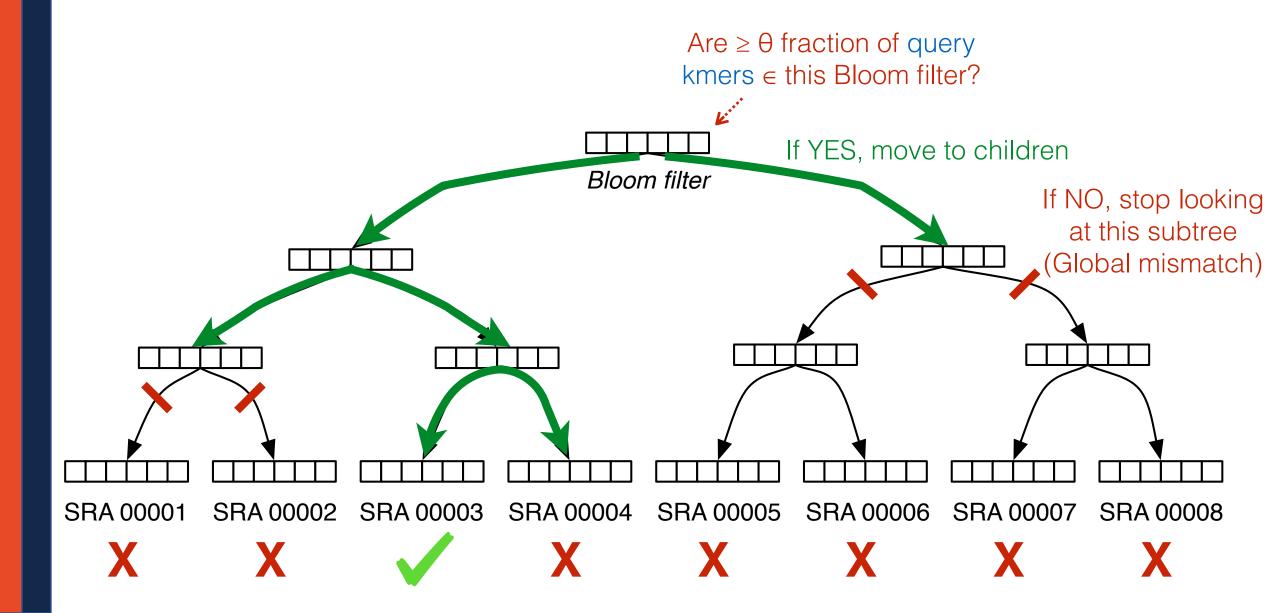
Imagine we have a large collection of text...

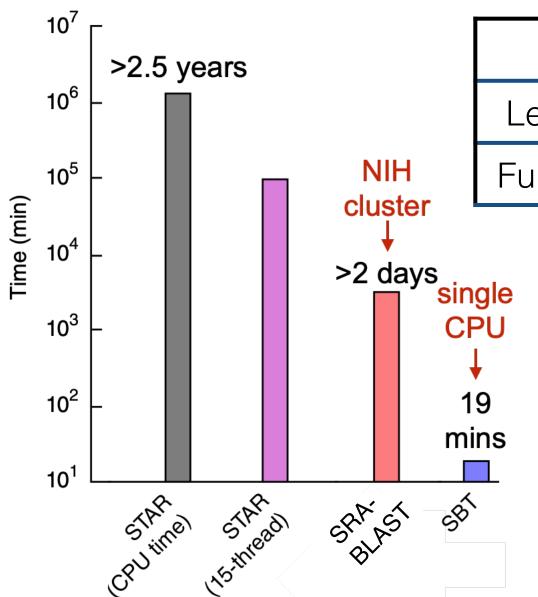


And our goal is to search these files for a query of interest...









	SRA	FASTA.gz	SBT
Leaves	4966 GB	2692 GB	63 GB
Full Tree	-	-	200 GB

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." *Nature biotechnology* 34.3 (2016): 300-302.

Solomon, Brad, and Carl Kingsford. "Improved search of large transcriptomic sequencing databases using split sequence bloom trees." *International Conference on Research in Computational Molecular Biology*. Springer, Cham, 2017.

Sun, Chen, et al. "Allsome sequence bloom trees." *International Conference on Research in Computational Molecular Biology*. Springer, Cham, 2017.

Harris, Robert S., and Paul Medvedev. "Improved representation of sequence bloom trees." *Bioinformatics* 36.3 (2020): 721-727.

Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." *Proceedings of the 2003 ACM SIGMOD international conference on Management of data*. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." *Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies*. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient Counting Bloom Filter." 2021 17th International Conference on Network and Service Management (CNSM). IEEE, 2021.

Mitzenmacher, Michael. "Compressed bloom filters." *IEEE/ACM transactions on networking* 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." *Information Systems* 54 (2015): 311-324.

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." *Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms*. 2004.

There are many more than shown here...