
Department of Computer Science

Data Structures and Algorithms

CS 225

Brad Solomon

October 25, 2023

Probability in CS 2

Informal Early Feedback
I attend lecture or watch lecture recordings:

Informal Early Feedback
The instructor is well prepared for each lecture

I feel I can actively participate in lecture

Informal Early Feedback
During lecture, I receive helpful and complete answers to my questions

Overall, attending lecture (in person) is a good use of my time.

Suggested Improvement (To Lectures)
Brad should improve his handwriting

Go over all MP functions in lecture / provide pseudocode

Add more introductory content (C++)

Suggested Improvement (To Lectures)
Add a weekly review session to cover topics

Slow down lectures / better motivate data structures

Reduce size of lecture (offer more sections?)

More accurate captions

Suggested Improvement (To Lectures)
Upload lecture slides earlier / make sure website matches with lecture

Upload lectures by subjects not by day

Learning Objectives

Analyze an example of each type

Discuss the three main types of ‘random’ in computer science

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

312

3 12

31 2

21 3

13 2

23 1

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Claim: is S(n) O(n log n)

N=0: N=1:

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

31

2

31

23

1

2

2

1

3

1

3

2

2

3

1

N=3:

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Let be the number of nodes in the left subtree.0 ≤ i ≤ n − 1

Then for a fixed , i S(n) = (n − 1) + S(i) + S(n − i − 1)

Average-Case Analysis: BST

S(n) = (n − 1) +
1
n

n−1

∑
i=0

S(i) + S(n − i − 1)

Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Average-Case Analysis: BST

S(n) = (n − 1) +
2
n

n−1

∑
i=1

S(i)

S(n) ≤ (n − 1) +
2
n ∫

n

1
(cx ln x)dx

S(n) = (n − 1) +
2
n

n−1

∑
i=1

(ci ln i)

S(n) ≤ (n − 1) +
2
n (cn2

2
ln n −

cn2

4
+

c
4) ≈ cn ln n

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Since is , if we assume we are randomly choosing a
node to insert, find, or delete* then each operation takes:

S(n) O(n log n)

Average-Case Analysis: BST

Summary: All operations are on average O(log n)

Randomness:

Assumptions:

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

…

Randomization in Algorithms

2. Use randomness inside algorithm to estimate expected running time

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

6 2 1 3 7 8 5 4

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is for any input!O(n log n)

Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is for any input!O(n log n)
Let be the total comparisons and be an indicator variable:X Xij

Xij = {
1 if ith object compared to jth

0 if ith object not compared to jth

Then…

Expectation Analysis: Randomized Quicksort

Claim: . E[Xi,j] =
2

j − i + 1
Base Case: (N=2)

Expectation Analysis: Randomized Quicksort

Claim: .E[Xi,j] =
2

j − i + 1
Induction: Assume true for all inputs of < n

Expectation Analysis: Randomized Quicksort

E[X] =
n−1

∑
i=0

n−1

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

Expectation Analysis: Randomized Quicksort

E[X] =
n−1

∑
i=0

n−1

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

n−1

∑
j=i+1

= 2(1
2

+
1
3

+ . . . +
1
n)

E[X] = 2
n−1

∑
i=0

n−i

∑
k=1

1
k

For :i = 0

n−1

∑
j=i+1

= 2(1
2

+
1
3

. . . +
1

n − 1)

For :i = 1

Expectation Analysis: Randomized Quicksort

Summary: Randomized quick sort is regardless of inputO(n log n)

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test

If is prime and is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if is composite and n an−1 ≡ 1 (mod n)

Pick a random in the range a [2, p − 2]

Probabilistic Accuracy: Fermat primality test
ap−1 ≡ 1 (mod p) ap−1 ≢ 1 (mod p)

 is primep

 is not primep

Probabilistic Accuracy: Fermat primality test
Let’s assume α = .5

First trial: and prime test returns ‘prime!’ a = a0

Is our number prime?

Second trial: and prime test returns ‘prime!’ a = a1

Third trial: and prime test returns ‘not prime!’ a = a2

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Types of randomized algorithms
A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.

Randomized Data Structures
Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!

