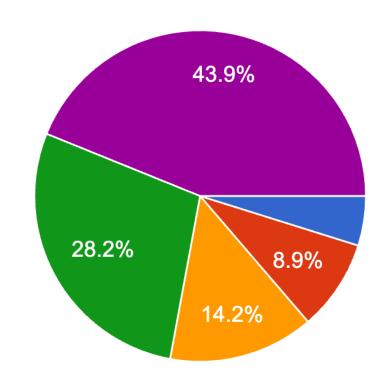
Data Structures and Algorithms Probability in CS 2

CS 225 Brad Solomon October 25, 2023

Department of Computer Science

Informal Early Feedback

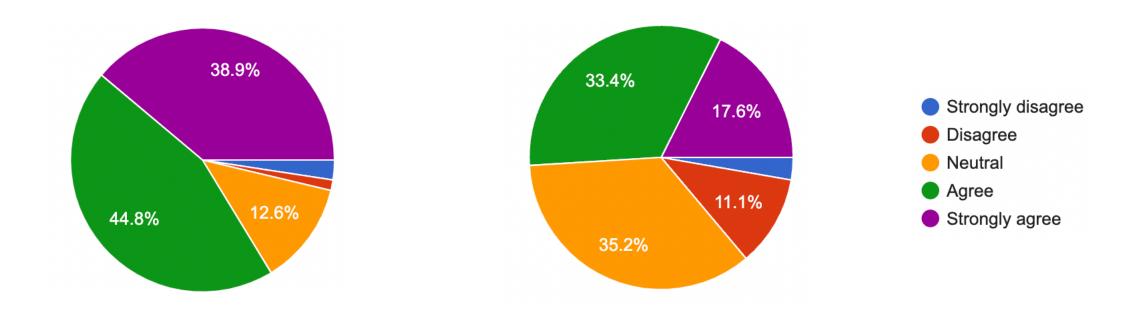
I attend lecture or watch lecture recordings:



- Almost never
- Sometimes
- Half the time
- Most of the time
- Almost always

Informal Early Feedback

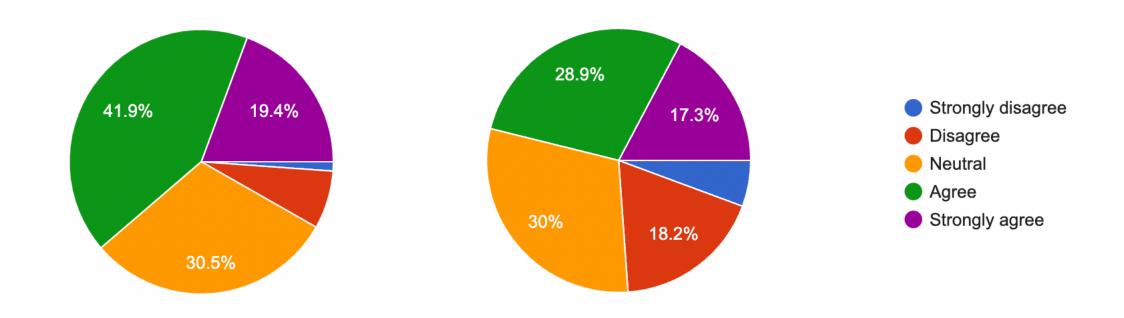
The instructor is well prepared for each lecture



I feel I can actively participate in lecture

Informal Early Feedback

During lecture, I receive helpful and complete answers to my questions



Overall, attending lecture (in person) is a good use of my time.

Suggested Improvement (To Lectures)

Brad should improve his handwriting

Go over all MP functions in lecture / provide pseudocode

Add more introductory content (C++)

Suggested Improvement (To Lectures)

Add a weekly review session to cover topics

Slow down lectures / better motivate data structures

Reduce size of lecture (offer more sections?)

More accurate captions

Suggested Improvement (To Lectures)

Upload lecture slides earlier / make sure website matches with lecture

Upload lectures by subjects not by day

Learning Objectives

Discuss the three main types of 'random' in computer science

Analyze an example of each type

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Randomization in Algorithms

1. Assume **input data is random** to estimate average-case performance

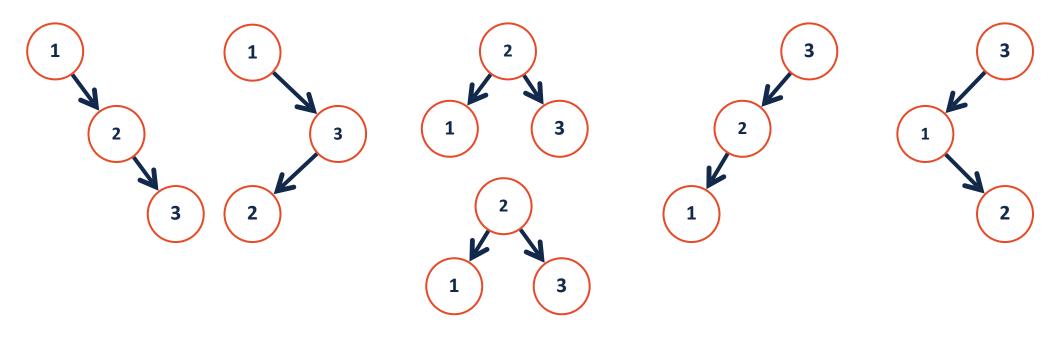
Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

Claim: S(n) is $O(n \log n)$

N=0: N=1:

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

N=3:



Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

Let $0 \le i \le n-1$ be the number of nodes in the left subtree.

Then for a fixed i, S(n) = (n - 1) + S(i) + S(n - i - 1)

Let S(n) be the **average** total internal path length **over all BSTs** that can be constructed by uniform random insertion of n objects

$$S(n) = (n-1) + \frac{1}{n} \sum_{i=0}^{n-1} S(i) + S(n-i-1)$$

$$S(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} S(i)$$

$$S(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} (ci \ ln \ i)$$

$$S(n) \le (n-1) + \frac{2}{n} \int_{1}^{n} (cx \ln x) dx$$

$$S(n) \le (n-1) + \frac{2}{n} \left(\frac{cn^2}{2} \ln n - \frac{cn^2}{4} + \frac{c}{4}\right) \approx cn \ln n$$

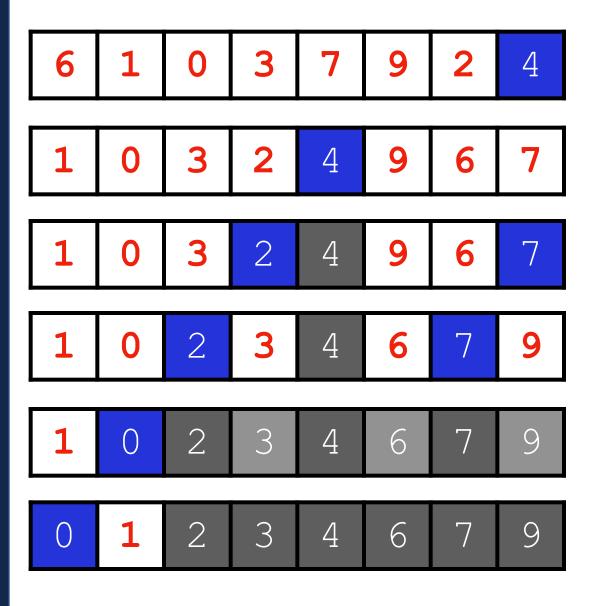
Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

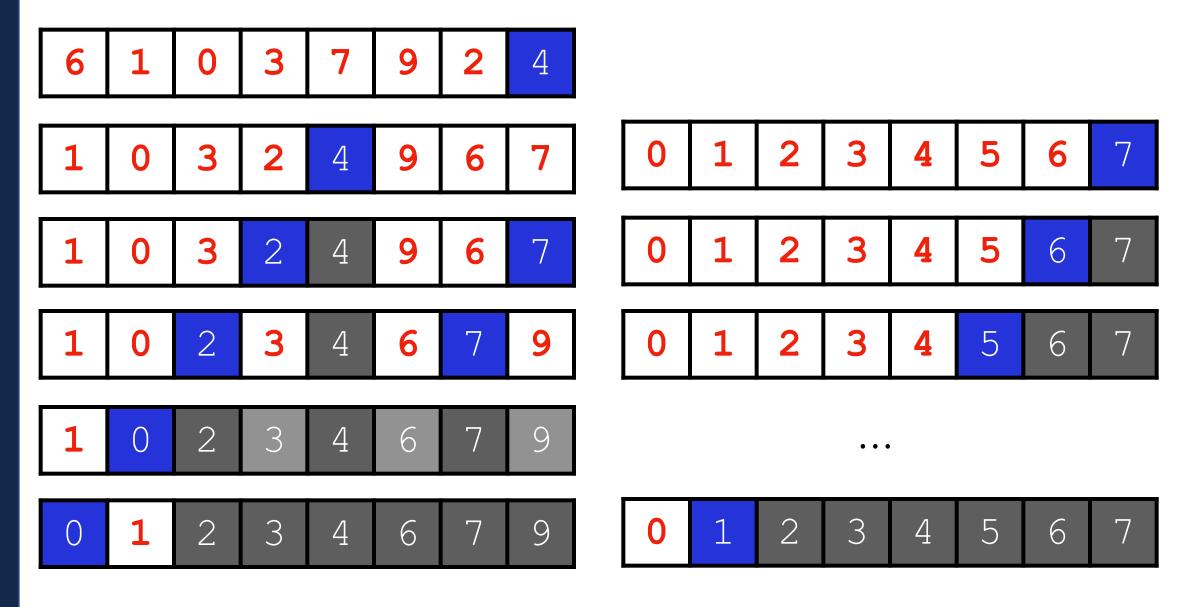
Since S(n) is $O(n \log n)$, if we assume we are randomly choosing a node to insert, find, or delete* then each operation takes:

Summary: All operations are on average O(log n)

Randomness:

Assumptions:



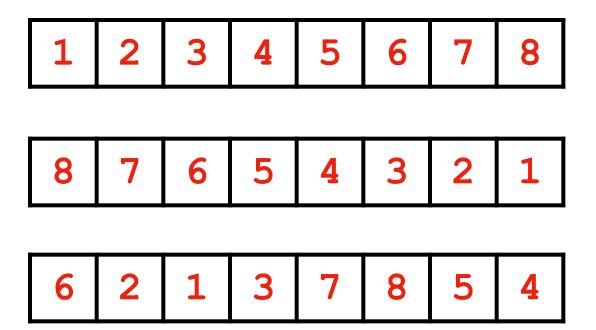


Randomization in Algorithms

2. Use **randomness inside algorithm** to estimate expected running time

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is $O(n \log n)$ for any input!



In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is $O(n \log n)$ for any input!

Let X be the total comparisons and X_{ij} be an **indicator variable**:

$$X_{ij} = \begin{cases} 1 \text{ if } i \text{th object compared to } j \text{th} \\ 0 \text{ if } i \text{th object not compared to } j \text{th} \end{cases}$$

Then...

Claim:
$$E[X_{i,j}] = \frac{2}{j-i+1}$$
.

Base Case: (N=2)

Claim:
$$E[X_{i,j}] = \frac{2}{j-i+1}$$
. Induction: Assume true for all inputs of $< n$

$$E[X] = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

For i = 0:

$$\sum_{j=i+1}^{n-1} = 2\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$$

For i = 1:

$$\sum_{i=i+1}^{n-1} = 2\left(\frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n-1}\right)$$

$$E[X] = 2\sum_{i=0}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k}$$

Summary: Randomized quick sort is $O(n \log n)$ regardless of input

Randomness:

Assumptions:

Pick a random a in the range [2, p-2]

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if n is composite and $a^{n-1} \equiv 1 \pmod{n}$

	$a^{p-1} \equiv 1 \pmod{p}$	$a^{p-1} \not\equiv 1 \pmod{p}$
p is prime		
p is not prime		

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Types of randomized algorithms

A **Las Vegas** algorithm is a randomized algorithm which will always give correct answer if run enough times but has no fixed runtime.

A **Monte Carlo** algorithm is a randomized algorithm which will run a fixed number of iterations and may give the correct answer.

Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on **expected** performance

Randomized data structures 'cheat' tradeoffs!