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Informal Early Feedback
I attend lecture or watch lecture recordings:



Informal Early Feedback
The instructor is well prepared for each lecture

I feel I can actively participate in lecture



Informal Early Feedback
During lecture, I receive helpful and complete answers to my questions

Overall, attending lecture (in person) is a good use of my time.



Suggested Improvement (To Lectures)
Brad should improve his handwriting

Go over all MP functions in lecture / provide pseudocode

Add more introductory content (C++)



Suggested Improvement (To Lectures)
Add a weekly review session to cover topics

Slow down lectures / better motivate data structures

Reduce size of lecture (offer more sections?)

More accurate captions



Suggested Improvement (To Lectures)
Upload lecture slides earlier / make sure website matches with lecture

Upload lectures by subjects not by day



Learning Objectives

Analyze an example of each type

Discuss the three main types of ‘random’ in computer science



Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time



Randomization in Algorithms

1. Assume input data is random to estimate average-case performance
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Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n

Claim:  is S(n) O(n log n)

N=0: N=1:



Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects
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N=3:



Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n

Let  be the number of nodes in the left subtree.0 ≤ i ≤ n − 1

Then for a fixed , i S(n) = (n − 1) + S(i) + S(n − i − 1)



Average-Case Analysis: BST

S(n) = (n − 1) +
1
n

n−1

∑
i=0

S(i) + S(n − i − 1)

Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n



Average-Case Analysis: BST
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Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n

Since  is , if we assume we are randomly choosing a 
node to insert, find, or delete* then each operation takes:

S(n) O(n log n)



Average-Case Analysis: BST

Summary: All operations are on average O(log n)

Randomness:

Assumptions:



6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort



6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

…



Randomization in Algorithms

2. Use randomness inside algorithm to estimate expected running time

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

6 2 1 3 7 8 5 4

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is  for any input!O(n log n)



Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is  for any input!O(n log n)
Let  be the total comparisons and  be an indicator variable:X Xij

Xij = {
1 if ith object compared to jth

0 if ith object not compared to jth

Then…



Expectation Analysis: Randomized Quicksort

Claim: . E[Xi,j] =
2

j − i + 1
Base Case: (N=2)

Significant mistake in lecture presentation!

X_{i,j} is the expected value of 
THE SINGLE PAIR. Not the total 
amount of comparisons!



Expectation Analysis: Randomized Quicksort

Claim: .E[Xi,j] =
2

j − i + 1
Induction: Assume true for all inputs of < n



Expectation Analysis: Randomized Quicksort

E[X] =
n−1

∑
i=0

n−1

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

We did not have time to cover this. Briefly: 

The key idea is writing out the internal sum after pulling out the 2 in 
the numerator. Which will show a pattern from 1/2 to … 1/(n-i)

Ex: i=0, j=i+1 -> 1/(i+1)-i+1=2

Ex: i=0, j=n-1 -> 1/(n-1)-i+1=n-i



Expectation Analysis: Randomized Quicksort
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For :i = 1
The key here is that sum of increasing 
fractions is O(log n) for some log.

Simplifying to 1/k makes it clear its ln



Expectation Analysis: Randomized Quicksort

Summary: Randomized quick sort is  regardless of inputO(n log n)

Randomness:

Assumptions:



Probabilistic Accuracy: Fermat primality test

If  is prime and  is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if  is composite and n an−1 ≡ 1 (mod n)

Pick a random  in the range  a [2, p − 2]



Probabilistic Accuracy: Fermat primality test
ap−1 ≡ 1 (mod p) ap−1 ≢ 1 (mod p)

 is primep

 is not primep



Probabilistic Accuracy: Fermat primality test
Let’s assume α = .5

First trial:  and prime test returns ‘prime!’ a = a0

Is our number prime?

Second trial:  and prime test returns ‘prime!’ a = a1

Third trial:  and prime test returns ‘not prime!’ a = a2

What is our false positive probability? Our false negative probability?



Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded) 
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:



Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time



Types of randomized algorithms
A Las Vegas algorithm is a randomized algorithm which will always 
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a 
fixed number of iterations and may give the correct answer.



Randomized Data Structures
Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance  

Randomized data structures ‘cheat’ tradeoffs!


