Data Structures and Algorithms Probability in CS 2 Part 2 7

CS 225 Brad Solomon October 25, 2023

Department of Computer Science

Informal Early Feedback 70,5%

I attend lecture or watch lecture recordings:

This is a lie

- Almost never
- Sometimes
- Half the time
- Most of the time
- Almost always

Informal Early Feedback

The instructor is well prepared for each lecture

Informal Early Feedback

During lecture, I receive helpful and complete answers to my questions

Overall, attending lecture (in person) is a good use of my time.

Suggested Improvement (To Lectures)

Brad should improve his handwriting 1) Lot of took (ant use!	Contatted lacture
2) Ask if my hand writing doesn't mak	e sense! Pacing!
Go over all MP functions in lecture / provi	ide pseudocode Santins
Add more introductory content (C++)	mant to add bears content"

Suggested Improvement (To Lectures)

Add a weekly review session to cover topics

AMAS for MPS

Us Senthin sinilar/

Slow down lectures / better motivate data structures

cy is we can implour

Reduce size of lecture (offer more sections?)

S) No

More accurate captions

Us Anto generated > Manually corrected

Suggested Improvement (To Lectures)

Upload lecture slides earlier / make sure website matches with lecture

Upload lectures by subjects not by day

Learning Objectives

Discuss the three main types of 'random' in computer science

Analyze an example of each type

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Consider vivre candomness is 2 ass umpilas

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

3 1 2

Lab BST

Average-Case Analysis: BST

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

Claim: S(n) is $O(n \log n) \rightarrow \bigcap_{n \to \infty} f_n f_n f_n$ is $g \otimes d$!

N=0:

N=1:

Path leigth

Average-Case Analysis: BST Ass un II trees

trees equally (41)

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects S_{am} all P_{eths} S_{con} (as t_{eth} all t_{eths})

N=3:

Average-Case Analysis: BST

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

Let $0 \le i \le n-1$ be the number of nodes in the left subtree.

Then for a fixed i, S(n) = (n-1) + S(i) + S(n-i-1)

Cy 1 notes is 100th is 100th in the left every thing else

Average-Case Analysis: BST

Let S(n) be the **average** total internal path length **over all BSTs** that can be constructed by uniform random insertion of n objects

$$S(n) = (n-1) + \frac{1}{n} \sum_{i=0}^{n-1} S(i) + S(n-i-1)$$

$$S(i) = S(0) + S(1) + S(1) - ... S(n-1)$$

$$S(n-i-1) = S(n-1) + ... + S(n-1)$$

Average-Case Analysis: BST (1945) (elevent plass ever

Average-Case Analysis: BSI
$$S(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} S(i)$$
Substantial Subst

$$S(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} \frac{(ci \ln i)}{\sum_{i=1}^{n} (cx \ln i)} \int_{1}^{n} \frac{(ci \ln i)}{\sum_{i=1}^{n} (cx \ln x) dx} \int_{1}^{n} \frac{(cx \ln x)}{\sum_{i=1}^{n} (cx \ln x)} \int_{1}^{n} \frac{(cx \ln x)}{\sum$$

$$S(n) \le (n-1) + \frac{2}{n} \int_{-\infty}^{n} (cx \ln x) dx$$

$$S(n) \le (n-1) + \frac{2}{n} \left(\frac{cn^2}{2} \ln n - \frac{cn^2}{4} + \frac{c}{4} \right) \approx cn \ln n$$

Average-Case Analysis: BST

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects Since S(n) is $O(n \log n)$, if we assume we are randomly choosing a node to insert, find, or delete* then each operation takes:

Average-Case Analysis: BST

Summary: All operations are on average $\Theta(\log n)$

```
Randomness:

1) We assumed all inputs were candom > real well coul assumed

2) We assumed Awery is candom > Not big o.

15 "voxt"
```

Assumptions:

by Asseme randomness is uniform

Randomization in Algorithms

2. Use randomness inside algorithm to estimate expected running time

In randomized quicksort the selection of the pivot is random.

Claim: The expected time is $O(n \log n)$ for any input! C Assume a law to the content of the co

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is $O(n \log n)$ for any input!

Let X be the total comparisons and X_{ij} be an **indicator variable**:

$$X_{ij} = \begin{cases} 1 & \text{if } i \text{th object compared to } j \text{th} \\ 0 & \text{if } i \text{th object not compared to } j \text{th} \end{cases}$$

Then...

Claim:
$$E[X_{i,j}] = \frac{2}{j-i+1}$$

Base Case: (N=2)

Significant mistake in lecture presentation!

$$\frac{2}{1-0+1} = \frac{2}{5}$$

X_{i,j} is the expected value of THE SINGLE PAIR. Not the total amount of comparisons!

expects

Claim: $E[X_{i,j}] = \frac{2}{i-i+1}$

Induction: Assume true for all inputs of < n

$$E[X] = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

We did not have time to cover this. Briefly:

The key idea is writing out the internal sum after pulling out the 2 in the numerator. Which will show a pattern from 1/2 to ... 1/(n-i)

Ex:
$$i=0$$
, $j=i+1 -> 1/(i+1)-i+1=2$

Ex:
$$i=0$$
, $j=n-1 -> 1/(n-1)-i+1=n-i$

$$E[X] = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

For i = 0:

$$\sum_{i=i+1}^{n-1} = 2\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$$

For i = 1:

$$\sum_{i=i+1}^{n-1} = 2\left(\frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n-1}\right)$$

$$E[X] = 2\sum_{i=0}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k}$$

The key here is that sum of increasing fractions is O(log n) for some log.

Simplifying to 1/k makes it clear its In

Summary: Randomized quick sort is $O(n \log n)$ regardless of input

Randomness:

My algorith (heize of Pivet!

Assumptions:

Pick a random a in the range [2, p-2]

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if n is composite and $a^{n-1} \equiv 1 \pmod{n}$

	$a^{p-1} \equiv 1 \pmod{p}$	$a^{p-1} \not\equiv 1 \pmod{p}$
p is prime		
p is not prime		

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Types of randomized algorithms

A **Las Vegas** algorithm is a randomized algorithm which will always give correct answer if run enough times but has no fixed runtime.

A **Monte Carlo** algorithm is a randomized algorithm which will run a fixed number of iterations and may give the correct answer.

Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on **expected** performance

Randomized data structures 'cheat' tradeoffs!