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Learning Objectives

Finish disjoint set analysis (one final proof)

—

Formalize the concept of randomized algorithms | |

e -
Review fundamentals of probablllty in computing \2

Distinguish the three main types of ‘random’in computer science




Disjoint Sets w/ Path Compression (0nd cank)

How do we observe how the efficiency of a set changes due to PC?
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Amortized Time Review

We have n items. We make n insert() calls.

We are interested in the worst case work p055|ble over n calls.
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Amortized Time (Rank w/ Path Compressioiné)1 5
s o Thy
We have nitems in an Uptree. We make m find() calls.” 7 co. =

N

We are interested in the worst case work possible over m calls.

ine we “C:w} OACQ/ s4Vve W</ % \\4 (\uh/r{

L?/”ax vosk L (e I




Key Properties of UpTree by rank w/ PC T

The parent of a node is always higher rank than the node. (%?
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The min(nodes) in a set with a root of rank 7 has > 2" nodes.
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For any integer r, there are at most — nodes of rank r.
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Amortized Time (Rank w/ Path Compression)
s U, .0 X & a st 9F brkeds

Put every non-root node in a bucket by rank! "Layent buchebe
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Iterated Logarithm Function (log™n)

7og*n is piecewise defined as I g ot tws e pee) o all o
Oifn <1 to et /\él
~— .

otherwise

1 + log™(logn)
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Amortized Time (Rank w/ Path Compression)

Let | B, | be the size of the bucket with min rank r.
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Amortized Time (Rank w/ Path Compression)

The work of find(x) are the steps taken on the path from a node x to the
root (or immediate child of the root) of the UpTree containing x /C,J‘

We can split this into two cases: O -2

Case 1: We take a step from one bucket to another bucket. C[)[ Q>,,
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Case 2: We take a step from one item to another inside the same bucket.




Amortized Time (Rank w/ Path Compression)

Case 2: We take a step from one item to another inside the same bucket.

A

Let’s call this the step from u to v. | 3

Every time we do this, we do path compression: Q/Q @Qt
We set parent(u) a little closer to root ’ v)
How many total times can | do this for each uin |B,|?
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Final Result
J O

We have n items in an Uptree. We make m ﬁnd() calls. Total work is:
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Randomized Algorithms %

A randomized algorithm is one which uses a source of randomness

somewhere in its implementation.
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A faulty list atl or v o

Imagine you have a list ADT implementation except... 7 clp

Every time you called insert, it would fail 50% of the time.
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Quick Primes with Fermat’s Primality Test

'3 n\"s P/:-f? do\ [q.\—lah i
If p is prime and a is not divisible by p, then a”~! = 1 (mod p) 14 uleeys
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But... sometimes if n is composite and a =1 (mod n) | \
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Fundamentals of Probability
Imagine you roll a pair of six-sided dice. :')'/ > , é, (4/ §/ q

(
The sample space €2 is the set of all possible outcomes. D;Sf‘
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An event £ C Q2 is any subset.
b D) < 2 | Mz ¢~ Db of owvite

G+ DIs>Y VY DL o




W( (blﬂl <0 WSL C-C‘éf’

'E)("F‘" dadon

Fundamentals of Probability ;

Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to nimgric values.
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The expectation of a (discrete) random variable is:
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Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+Y]|=E|X]|+E|Y] (Clalm) Y
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Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

E[X+Y]=E[X]+E[Y
[ | = EIX] + E[Y] Pﬂ"("l ny:
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Fundamentals of Probability @

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =EX]|+ E|Y]




Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time




