
Department of Computer Science

Data Structures
Disjoint Sets 3

October 20, 2023
CS 225

Brad Solomon & G Carl Evans

Learning Objectives

Introduce path compression and rank

Discuss efficiency of disjoint sets

Prove efficiency of disjoint sets (again)

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

Key Ideas:

• Each element exists in exactly one set.

• Every item in each set has the same representation

• Each set has a different representation

Disjoint Sets Representation
We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

Negative values denote representative elements (the root)

All other set members store the index to a parent of the UpTree

3

2

51

Disjoint Sets – Best and Worst UpTree

4

3
2

4

3 1

2

1

1 2 3 40

3 4 2 -1

1 2 3 40

4 4 4 -1

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height

Union by size

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Claim that both guarantee the height of the tree is: _____________. O(log n)

-4 -3

-4 -8

Disjoint Sets Union by Size

0

1

4

8

1 2 3 4 5 6 70

8 -2 -4 34

8 9

4

unionBySize(4, 3)

void DisjointSets::unionBySize(int root1, int root2) {

 int newSize = arr_[root1] + arr_[root2];

 if (arr_[root1] < arr_[root2]) {

 
 arr_[root2] = root1;

 arr_[root1] = newSize;

 } else {

 
 arr_[root1] = root2;

 arr_[root2] = newSize;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

3

6

Disjoint Sets Union by Size
Claim: Sets unioned by size have a height of at most O(log2 n)

Claim: An UpTree of height h has nodes ≥

Base Case:

2h

X

Base case height is 0, has one node.

20 = 1

vs.

Base case holds!

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for unions, prove for th union.< i i

(We have done total unions and plan to do one more)i − 1

? ?

Case 1: h(A) < h(B)

Case 2: h(A) == h(B)

Case 3: h(A) > h(B)

n(B) n(A)≥

…

…

A

B

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 1: height(A) < height(B)

n(B) n(A)≥

IH: Claim is true for unions, prove for th union.< i i

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 2: height(A) == height(B)

IH: Claim is true for unions, prove for th union.< i i

n(B) n(A)≥

Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 3: height(A) > height(B)

IH: Claim is true for unions, prove for th union.< i i

n(B) n(A)≥

Disjoint Sets Union by Size
Proven: An UpTree of height h has nodes ≥ 2h

Each case we saw we have . n ≥ 2h

n(B) n(A)≥

IH: Claim is true for unions, prove for th union.< i i

Path Compression

1

2

3

6

7

8

9

4

5

10

11

Find(6)

Path Compression

1

2

3

6 7

8

94

5

10

11

Find(6)

1

2

3

6

7

8

9

4

5

10

11

Disjoint Sets – Union by Rank (not height!)

5

7

9
4

0 83

6

1 2 3 4 5 6 70 8 9

21

Union by Rank (Not Height)
The change: New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

This is identical to height (with a different starting base)!

rank(A) == rank(B): The merged UpTree has rank + 1

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

Union by Rank
Claim: An UpTree of rank r has nodes .≥ 2r

Base Case:

Inductive Step: IH holds for all UpTrees up to k < r

Try solving yourself before seeing answer (next slide)!

Union by Rank - Proof

Much like before we will show that in a tree with a root of rank there are

Base Case: UpTree of rank = 0 has 1 node

Inductive Hypothesis: for all trees of ranks

A root of rank is created by merging two trees of rank

	 by IH each of those trees have

	 	 	 so, tree a of rank has

Taking the inverse, we get a height of

𝑟 𝑛𝑜𝑑𝑒𝑠(𝑟) ≥ 2𝑟

20 = 1

𝑘, 𝑘 < 𝑟, 𝑛𝑜𝑑𝑒𝑠(𝑘) ≥ 2𝑘
𝑟 𝑟 − 1

𝑛𝑜𝑑𝑒𝑠(𝑟 − 1) ≥ 2𝑟−1

𝑟 𝑛𝑜𝑑𝑒𝑠(𝑟) ≥ 2 × 2𝑟−1 ≥ 2𝑟

𝑂(log(𝑛))

Union by Rank w/ Path Compression
How does rank w/ path compression affect our runtime?

1

2

3

6

7

8

9

4

5

10

11

1

2

3

6 7

8

94

5

10

11

Union by Rank w/ Path Compression
1. Rank only changes for roots and can only increase (unlike height!)

2. For all non-root nodes x, rank(x) < rank(parent(x))

3. If parent(x) changes, then our new parent has larger rank.

Union by Rank w/ Path Compression
4. min(nodes) in a set with a root of rank has nodes.r ≥ 2r

5. Since there are only nodes the highest possible rank is .𝑛 ⌊log n⌋

Union by Rank w/ Path Compression
6. For any integer , there are at most nodes of rank .r

n
2r

r

Amortized Time (Rank w/ Path Compression)
For n calls to makeSets() [n items] and m find() calls the max work is…

This gives us a more accurate picture since each find can
make our search a faster!

Two cases of find():

1. We search for root [or a node whose parent is root]

2. We search for a node where neither above apply.

Amortized Time (Rank w/ Path Compression)
Put every non-root node in a bucket by rank!

Structure buckets to store ranks [r, 2r − 1]

Ranks Bucket

0 0
1 1

2 - 3 2

4 - 15 3

16 – 65535 4

65536 – 2^{65536}-1 5

Iterated Logarithm Function ()𝑙𝑜𝑔∗𝑛
 is piecewise defined as

	 if

otherwise

	

𝑙𝑜𝑔∗𝑛
0 𝑛 ≤ 1

1 + 𝑙𝑜𝑔∗(log𝑛)

Amortized Time (Rank w/ Path Compression)

Ranks Bucket

0 0
1 1

2 - 3 2

4 - 15 3

16 – 65535 4

65536 – 2^{65536}-1 5

Let be the size of the bucket with min rank . |Br | r

What is ?max(|Br |)

The work of find(x) is the steps taken on the path from a node x to the root
(or immediate child of the root) of the UpTree containing x

Amortized Time (Rank w/ Path Compression)

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.

Amortized Time (Rank w/ Path Compression)
Case 2: We take a step from one item to another inside the same bucket.
Let’s call this the step from u to v.

u

v
vu

Every time we do this, we do path compression:
We set parent(u) a little closer to root

How many total times can I do this for each u in ?|Br |

How many nodes are in ?|Br |

Final Result

For n calls to makeSets() [n items] and m find() calls the max work is:

Even Better

In case that still seems too slow tightest bound is actually

Where is the inverse Ackermann function which grows much slower
than log*n.

Proof well outside this class.

Θ(𝑚 𝛼(𝑚, 𝑛))

𝛼(𝑚, 𝑛)

Randomized Algorithms
A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.

0
1 ∅
2
3
4

Greg

Frank

Betty
Anna

Francis
Peter

Figure from Ondov et al 2016

0
1
0
0
1

H(z)

0 2 1 0 0 4 0 2 0 6
1 0 2 3 1 0 3 4 0 1
2 1 0 2 0 1 0 0 7 2

H(x)
H(y)
H(z)

