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Learning Objectives

Discuss efficiency of disjoint sets
Introduce path compression and rank

Prove efficiency of disjoint sets (again)




Disjoint Sets

Key Ideas:

e Each element exists in exactly one set.

e Every item in each set has the same representation
» Each set has a different representation



Disjoint Sets Representation

We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

Negative values denote representative elements (the root)

All other set members store the index to a parent of the UpTree




Disjoint Sets - Best and Worst UpTree
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Disjoint Sets - Smart Union
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Claim that both guarantee the height of the tree is: © (10g n)

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height



Disjoint Sets Union by Size unionBySize (4, 3)

1l | void DisjointSets: :unionBySize (int rootl, int root2) {

2 int newSize = arr [rootl] + arr [root2];

3

4 if ( arr [rootl] < arr [root2] ) {

5 A A
6 arr [root2] = rootl; (i) <i>
7 y B S %
8 arr [rootl] = newSize;

9 CICIENO
10 } else {
; o
12 arr [rootl] = root2;
13
14 arr [root2] = newSize;
15
16 }




Disjoint Sets Union by Size

Claim: Sets unioned by size have a height of at most O(logz n)
Claim: An UpTree of height h has nodes > 2"

Base Case:
Base case height is 0, has one node.

0

Base case holds!



Disjoint Sets Union by Size

Claim: An UpTree of height h has nodes > 2

IH: Claim is true for < 1 unions, prove for ith union.

(We have done i — 1 total unions and plan to do one more)

n(B) = n(A)

Case 1: h(A) < h(B) A

Case 2: h(A) == h(B)

Case 3: h(A) > h(B)




Disjoint Sets Union by Size

Claim: An UpTree of height h has nodes > 2
IH: Claim is true for < 1 unions, prove for ith union.

Case 1: height(A) < height(B)



Disjoint Sets Union by Size

Claim: An UpTree of height h has nodes > 2
IH: Claim is true for < 1 unions, prove for ith union.

Case 2: height(A) == height(B)



Disjoint Sets Union by Size

Claim: An UpTree of height h has nodes > 2
IH: Claim is true for < 1 unions, prove for ith union.

Case 3: height(A) > height(B)



Disjoint Sets Union by Size

Proven: An UpTree of height h has nodes > 2"

IH: Claim is true for < 1 unions, prove for ith union.

Each case we saw we haven > o



Path Compression Find (6)
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Find (6)
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Disjoint Sets - Union by Rank (not height!)
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Union by Rank (Not Height)

The change: New UpTrees have rank =0

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has rank + 1
rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

This is identical to height (with a different starting base)!




Union by Rank

Claim: An UpTree of rank r has nodes > 2.

Base Case:

Inductive Step: |H holds for all UpTreesup to k < r

Try solving yourself before seeing answer (next slide)!



Union by Rank - Proof

Much like before we will show that in a tree with a root of rank r there are nodes(r) > 2"

Base Case: UpTree of rank = 0 has 1 node 2° = 1

Inductive Hypothesis: for all trees of ranks k, k < r, nodes(k) > 2*

A root of rank r is created by merging two trees of rank r — 1
by IH each of those trees have nodes(r — 1) > 27!
so, tree a of rank r has nodes(r) > 2 x 2" =1 > 2r

Taking the inverse, we get a height of O(log(n))




Union by Rank w/ Path Compression

How does rank w/ path compression affect our runtime?
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Union by Rank w/ Path Compression

1. Rank only changes for roots and can only increase (unlike height!)

2. For all non-root nodes x, rank(x) < rank(parent(x))

3. If parent(x) changes, then our new parent has larger rank.




Union by Rank w/ Path Compression

4. min(nodes) in a set with a root of rank r has > 2" nodes.

5. Since there are only n nodes the highest possible rank is |log n|.




Union by Rank w/ Path Compression @

n

6. For any integer r, there are at most Y nodes of rank r.




Amortized Time (Rank w/ Path Compression)

For n calls to makeSets() [n items] and m find() calls the max work is...

This gives us a more accurate picture since each find can
make our search a faster!

Two cases of find():

1. We search for root [or a node whose parent is root]

2. We search for a node where neither above apply.




Amortized Time (Rank w/ Path Compression)

Put every non-root node in a bucket by rank!

0

Structure buckets to store ranks [r, 2" — 1] 1
2-3

16 — 65535

0
1
2
4-15 3
4
65536 — 27{65536}-1 5




Iterated Logarithm Function (log™n)

log™n is piecewise defined as
Oifn <1

otherwise

1 + log"(logn)




Amortized Time (Rank w/ Path Compression)

Let | B, | be the size of the bucket with min rank r.

. 0 0

What is max(| B, |)? . .
2-3 2

4-15 3

16 — 65535 4

65536 — 27{65536}-1 5




Amortized Time (Rank w/ Path Compression)

The work of find(x) is the steps taken on the path from a node x to the root
(or immediate child of the root) of the UpTree containing x

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.




Amortized Time (Rank w/ Path Compression)

Case 2: We take a step from one item to another inside the same bucket.

A

Let’s call this the step from u to v. @ 4

Every time we do this, we do path compression: @ Q\@)
We set parent(u) a little closer to root Q{ @

How many total times can | do this for each uin |B,|?

How many nodes arein | B, |?




Final Result @

For n calls to makeSets() [n items] and m find() calls the max work is:




Even Better

In case that still seems too slow tightest bound is actually

O(m a(m, n))

Where a(m, n) is the inverse Ackermann function which grows much slower
than log*n.

Proof well outside this class.




Randomized Algorithms

A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.
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Figure from Ondov et al 2016




