Data Structures Disjoint Sets 3

CS 225 October 20, 2023
Brad Solomon & G Carl Evans

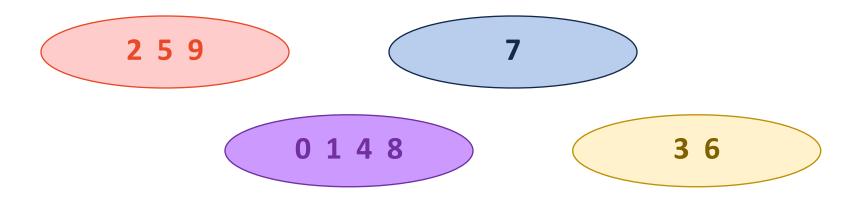
Learning Objectives

Discuss efficiency of disjoint sets

Introduce path compression and rank

Prove efficiency of disjoint sets (again)

Disjoint Sets



Key Ideas:

- Each element exists in exactly one set.
- Every item in each set has the same representation
- Each set has a different representation

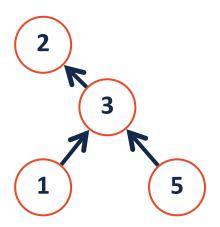
Disjoint Sets Representation

We can represent a disjoint set as an array where the key is the index

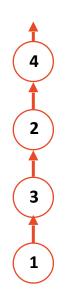
The values inside the array stores our sets as a pseudo-tree (UpTree)

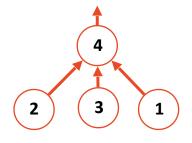
Negative values denote representative elements (the root)

All other set members store the index to a parent of the UpTree



Disjoint Sets - Best and Worst UpTree

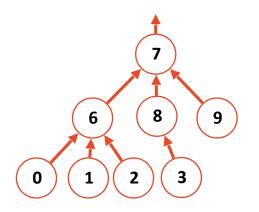


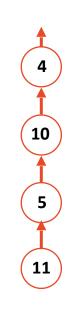


0	1	2	3	4
	3	4	2	-1

0	1	2	3	4
	4	4	4	-1

Disjoint Sets - Smart Union





Union by height

1					4							
	6	6	6	8	-4	10	7	-3	7	7	4	5

Idea: Keep the height of the tree as small as possible.

Union by size

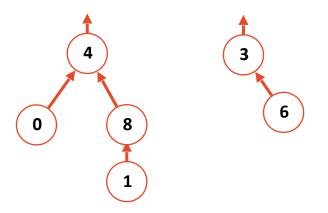
				4							
6	6	6	8	-4	10	7	-8	7	7	4	5

Idea: Minimize the number of nodes that increase in height

Claim that both guarantee the height of the tree is: $\frac{O(\log n)}{n}$.

unionBySize(4, 3)

```
void DisjointSets::unionBySize(int root1, int root2) {
      int newSize = arr [root1] + arr [root2];
 3
     if ( arr [root1] < arr [root2] ) {</pre>
 4
 5
       arr [root2] = root1;
       arr [root1] = newSize;
      } else {
10
11
       arr [root1] = root2;
12
13
       arr [root2] = newSize;
14
15
16
```



0	1	2	3	4	5	6	7	8	9
4	8		-2	-4		3		4	

Claim: Sets unioned by size have a height of at most O(log₂ n)

Claim: An UpTree of height **h** has nodes $\geq 2^h$

Base Case:

Base case height is 0, has one node.

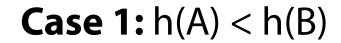
VS.

$$2^0 = 1$$

Claim: An UpTree of height **h** has nodes $\geq 2^h$

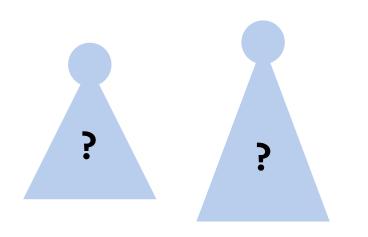
IH: Claim is true for < i unions, prove for ith union.

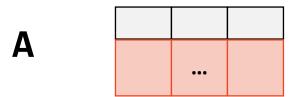
(We have done i-1 total unions and plan to do **one** more)

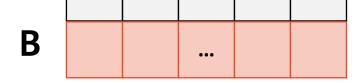


Case 2:
$$h(A) == h(B)$$

Case 3:
$$h(A) > h(B)$$







 $n(B) \ge n(A)$

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

Case 1: height(A) < height(B)

 $n(B) \ge n(A)$

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

Case 2: height(A) == height(B)

 $n(B) \ge n(A)$

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

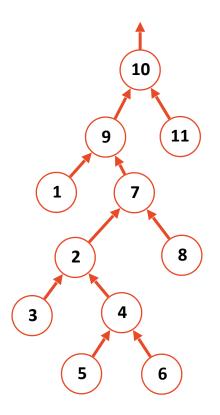
Case 3: height(A) > height(B)

Proven: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

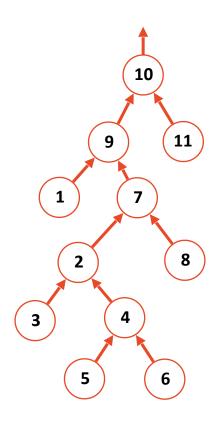
Each case we saw we have $n \geq 2^h$.

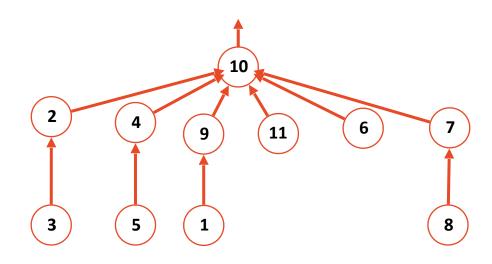
Path Compression



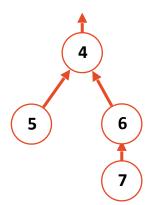
Path Compression

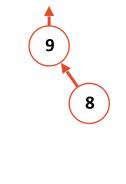
Find(6)





Disjoint Sets - Union by Rank (not height!)





0	1	2	3	4	5	6	7	8	9

Union by Rank (Not Height)

The change: New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has rank + 1

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

This is identical to height (with a different starting base)!

Union by Rank

Claim: An UpTree of rank **r** has nodes $\geq 2^r$.

Base Case:

Inductive Step: IH holds for all UpTrees up to k < r

Try solving yourself before seeing answer (next slide)!

Union by Rank - Proof

Much like before we will show that in a tree with a root of rank r there are $nodes(r) \geq 2^r$

Base Case: UpTree of rank = 0 has 1 node $2^0 = 1$

Inductive Hypothesis: for all trees of ranks $k, k < r, nodes(k) \ge 2^k$

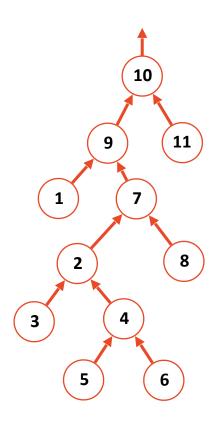
A root of rank r is created by merging two trees of rank r-1

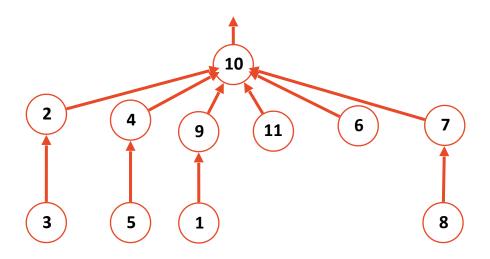
by IH each of those trees have $nodes(r-1) \ge 2^{r-1}$

so, tree a of rank r has $nodes(r) \ge 2 \times 2^{r-1} \ge 2^r$

Taking the inverse, we get a height of $O(\log(n))$

How does rank w/ path compression affect our runtime?





1. Rank only changes for roots and can only increase (unlike height!)

2. For all non-root nodes x, rank(x) < rank(parent(x))

3. If parent(x) changes, then our new parent has larger rank.

4. min(nodes) in a set with a root of rank r has $\geq 2^r$ nodes.

5. Since there are only n nodes the highest possible rank is $\lfloor log n \rfloor$.

6. For any integer r, there are at most $\frac{n}{2^r}$ nodes of rank r.

For **n** calls to makeSets() [**n items**] and **m** find() calls the max work is...

This gives us a more accurate picture since each find can make our search a faster!

Two cases of find():

1. We search for root [or a node whose parent is root]

2. We search for a node where neither above apply.

Put every non-root node in a bucket by rank!

Structure buckets to store ranks $[r, 2^r - 1]$

Ranks	Bucket
0	0
1	1
2 - 3	2
4 - 15	3
16 – 65535	4
65536 - 2^{65536}-1	5

Iterated Logarithm Function (log^*n)

 log^*n is piecewise defined as

$$0 \text{ if } n \leq 1$$

otherwise

$$1 + log^*(\log n)$$

Let $|B_r|$ be the size of the bucket with min rank r.

What is $max(|B_r|)$?

Ranks	Bucket
0	0
1	1
2 - 3	2
4 - 15	3
16 – 65535	4
65536 - 2^{65536}-1	5

The work of **find(x)** is the steps taken on the path from a node x to the root (or immediate child of the root) of the UpTree containing x

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

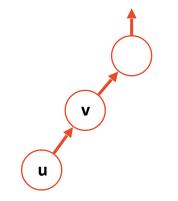
Case 2: We take a step from one item to another inside the same bucket.

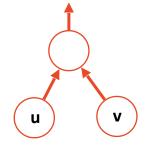
Case 2: We take a step from one item to another *inside* the same bucket.

Let's call this the step from **u** to **v**.

Every time we do this, we do path compression:

We set parent(u) a little closer to root





How many total times can I do this for each ${\bf u}$ in $|B_r|$?

How many nodes are in $|B_r|$?

Final Result

For **n** calls to makeSets() [**n items**] and **m** find() calls the max work is:

Even Better

In case that still seems too slow tightest bound is actually

$$\Theta(m \ \alpha(m, n))$$

Where $\alpha(m,n)$ is the inverse Ackermann function which grows much slower than log*n.

Proof well outside this class.

Randomized Algorithms

A **randomized algorithm** is one which uses a source of randomness somewhere in its implementation.

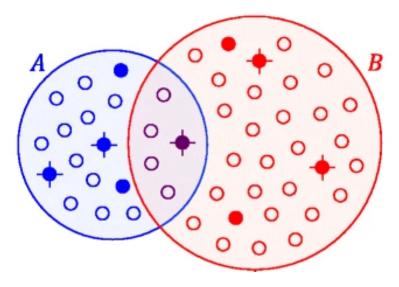
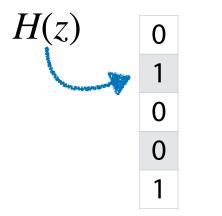
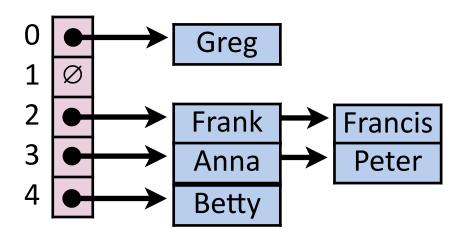


Figure from Ondov et al 2016





H(x)										
H(y)	1	0	2	3	1	0	3	4	0	1
H(z)	2	1	0	2	0	1	0	0	7	2