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Learning Objectives

Introduce path compression and rank

Discuss efficiency of disjoint sets

Prove efficiency of disjoint sets (again)



Disjoint Sets
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Key Ideas:

• Each element exists in exactly one set.

• Every item in each set has the same representation

• Each set has a different representation



Disjoint Sets Representation
We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

Negative values denote representative elements (the root)

All other set members store the index to a parent of the UpTree
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Disjoint Sets – Best and Worst UpTree
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Disjoint Sets – Smart Union
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Union by height

Union by size

Idea: Keep the height of 
the tree as small as 
possible.

Idea: Minimize the 
number of nodes that 
increase in height

Claim that both guarantee the height of the tree is: _____________. O(log n)
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Disjoint Sets Union by Size
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unionBySize(4, 3)

void DisjointSets::unionBySize(int root1, int root2) {

  int newSize = arr_[root1] + arr_[root2];

  

  if ( arr_[root1] < arr_[root2] ) {

 
    arr_[root2] = root1;


    arr_[root1] = newSize;


  } else {

 
    arr_[root1] = root2;


    arr_[root2] = newSize;


  }

}
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Disjoint Sets Union by Size
Claim: Sets unioned by size have a height of at most O(log2 n)

Claim: An UpTree of height h has nodes ≥

Base Case:

2h

X

Base case height is 0, has one node.

20 = 1

vs.

Base case holds!



Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

IH: Claim is true for  unions, prove for th union.< i i

(We have done  total unions and plan to do one more)i − 1

? ?

Case 1: h(A) < h(B)

Case 2: h(A) == h(B)

Case 3: h(A) > h(B)

n(B)  n(A)≥

…

…

A

B



Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 1: height(A) < height(B)

n(B)  n(A)≥

IH: Claim is true for  unions, prove for th union.< i i



Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 2: height(A) == height(B)

IH: Claim is true for  unions, prove for th union.< i i

n(B)  n(A)≥



Disjoint Sets Union by Size
Claim: An UpTree of height h has nodes ≥ 2h

Case 3: height(A) > height(B)

IH: Claim is true for  unions, prove for th union.< i i

n(B)  n(A)≥



Disjoint Sets Union by Size
Proven: An UpTree of height h has nodes ≥ 2h

Each case we saw we have . n ≥ 2h

n(B)  n(A)≥

IH: Claim is true for  unions, prove for th union.< i i



Path Compression
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Path Compression
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Disjoint Sets – Union by Rank (not height!)
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Union by Rank (Not Height)
The change: New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

This is identical to height (with a different starting base)! 

rank(A) == rank(B): The merged UpTree has rank + 1  

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)



Union by Rank
Claim: An UpTree of rank r has nodes .≥ 2r

Base Case: 

Inductive Step: IH holds for all UpTrees up to k < r

Try solving yourself before seeing answer (next slide)!



Union by Rank - Proof

Much like before we will show that in a tree with a root of rank  there are 


Base Case: UpTree of rank = 0 has 1 node 


Inductive Hypothesis: for all trees of ranks 

A root of rank  is created by merging two trees of rank 


	 by IH each of those trees have 


	 	 	 so, tree a of rank has 


Taking the inverse, we get a height of 

𝑟 𝑛𝑜𝑑𝑒𝑠(𝑟) ≥  2𝑟

20 = 1

𝑘,  𝑘 < 𝑟,   𝑛𝑜𝑑𝑒𝑠(𝑘) ≥ 2𝑘 
𝑟 𝑟 − 1

𝑛𝑜𝑑𝑒𝑠(𝑟 − 1) ≥ 2𝑟−1

𝑟  𝑛𝑜𝑑𝑒𝑠(𝑟) ≥ 2 × 2𝑟−1 ≥ 2𝑟

𝑂(log(𝑛))



Union by Rank w/ Path Compression
How does rank w/ path compression affect our runtime?
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Union by Rank w/ Path Compression
1. Rank only changes for roots and can only increase (unlike height!)

2. For all non-root nodes x, rank(x) < rank(parent(x))

3. If parent(x) changes, then our new parent has larger rank.



Union by Rank w/ Path Compression
4. min(nodes) in a set with a root of rank  has  nodes.r ≥ 2r

5. Since there are only  nodes the highest possible rank is .𝑛 ⌊log n⌋



Union by Rank w/ Path Compression
6. For any integer , there are at most  nodes of rank .r

n
2r

r



Amortized Time (Rank w/ Path Compression)
For n calls to makeSets() [n items] and m find() calls the max work is…

This gives us a more accurate picture since each find can 
make our search a faster!

Two cases of find():

1. We search for root [or a node whose parent is root]

2. We search for a node where neither above apply.



Amortized Time (Rank w/ Path Compression)
Put every non-root node in a bucket by rank!

Structure buckets to store ranks [r, 2r − 1]

Ranks Bucket

0 0
1 1

2 - 3 2

4 - 15 3

16 – 65535 4

65536 – 2^{65536}-1 5



Iterated Logarithm Function ( )𝑙𝑜𝑔∗𝑛
  is piecewise defined as


	  if 

otherwise


	

𝑙𝑜𝑔∗𝑛
0 𝑛 ≤ 1

1 + 𝑙𝑜𝑔∗(log𝑛)



Amortized Time (Rank w/ Path Compression)

Ranks Bucket

0 0
1 1

2 - 3 2

4 - 15 3

16 – 65535 4

65536 – 2^{65536}-1 5

Let  be the size of the bucket with min rank . |Br | r

What is ?max( |Br | )



The work of find(x) is the steps taken on the path from a node x to the root 
(or immediate child of the root) of the UpTree containing x

Amortized Time (Rank w/ Path Compression)

We can split this into two cases:

Case 1: We take a step from one bucket to another bucket.

Case 2: We take a step from one item to another inside the same bucket.



Amortized Time (Rank w/ Path Compression)
Case 2: We take a step from one item to another inside the same bucket.
Let’s call this the step from u to v.

u

v
vu

Every time we do this, we do path compression:
We set parent(u) a little closer to root

How many total times can I do this for each u in ?|Br |

How many nodes are in ?|Br |



Final Result

For n calls to makeSets() [n items] and m find() calls the max work is:



Even Better

In case that still seems too slow tightest bound is actually


Where  is the inverse Ackermann function which grows much slower 
than log*n.


Proof well outside this class.

Θ(𝑚 𝛼(𝑚, 𝑛))

𝛼(𝑚, 𝑛)



Randomized Algorithms
A randomized algorithm is one which uses a source of randomness 
somewhere in its implementation.
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