Data Structures

Disjoint Sets 2

CS 225 October 18, 2023
Brad Solomon & G Carl Evans

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Finish disjoint set implementation

Discuss efficiency of disjoint sets

Disjoint Sets

Key Ideas:

e Each element exists in exactly one set.

e Every item in each set has the same representation
» Each set has a different representation

Implementation #2

D@D

Find(k):

Union(k;, k>):

UpTrees

ololole

Disjoint Sets

5
@5@ ' @fb ®

UpTrees: Worst Case

ololole

Disjoint Sets Representation @

We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

The value -1 is our representative element (the root)

All other set members store the index to a parent of the UpTree

k0

Disjoint Sets Find

int DisjointSets::find(int i) {
if (s[i] < 0) { return i; }
else { return find(s[i]); }

}

BWN =

Running time?

What is ideal UpTree?

Disjoint Sets Union

int DisjointSets::union(int rl, int r2) {

b WN =

Disjoint Sets - Union

o \@
os

GRONOOS

(o0}

10

11

10

~N

Disjoint Sets - Smart Union

A

of \@
oo

GRONOOS

Union by height | o 1 2 3 4 5 6 7 8 9 | 10 | 11 | Idea: Keep the height of
the tree as small as
6 6 6 8 10 7 7 7 4 5 possible.

Disjoint Sets - Smart Union

A

of \@
oo

GRONOOS

Union by size 0 1 2 3 4 5 6 7 8 9 | 10 | 11 | /dea: Minimize the
number of nodes that
£ E E e O 7 7 4 > | increase in height

Disjoint Sets - Smart Union

A

of \@
oo

GRONOOS

Unionbyheight [0o 1 [23 [a[5]6] 77]s 10 | 11
6 6 6 8 10 | 7 7 4 | 5

Unionbysize [0 | 1 [2 [3[4 [5]6]7]s 10 | 11

6 6 6 8 10 | 7 7 a4 | 5

Claim that both guarantee the height of the tree is:

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Disjoint Sets Find

int DisjointSets::find(int i) {
if (s[i] < 0) { return i; }
else { return find(s[i]); }

}

BWN =

Does our metadata change anything?

3/-4

Disjoint Sets Union Example

HOOOOE

unionBySize (4, 3)

Isjoint Sets Union

void DisjointSets: :unionBySize (int rootl, int root2) {
int newSize = arr [rootl] + arr [root2];

if (arr [rootl] < arr [root2]) ({

arr [root2] = rootl; <i> j:
A
arr [rootl] = newSize; X %
} else { (:; G

arr [rootl]

root2;

arr [root2] = newSize;

Disjoint Sets Union by Size

Claim: Sets unioned by size have a height of at most O(logz n)

Claim: An UpTree of height h has nodes >

Base Case:

Disjoint Sets Union by Size

Claim: An UpTree of height h has nodes > 2"
IH:

Disjoint Sets Union by Size

Claim: An UpTree of height h has nodes > 2
IH: Claim is true for < 1 unions, prove for ith union.

Case 1: height(A) < height(B)

Disjoint Sets Union by Size

Claim: An UpTree of height h has nodes > 2
IH: Claim is true for < 1 unions, prove for ith union.

Case 2: height(A) == height(B)

Disjoint Sets Union by Size

Claim: An UpTree of height h has nodes > 2
IH: Claim is true for < 1 unions, prove for ith union.

Case 3: height(A) > height(B)

Disjoint Sets Union by Size

Proven: An UpTree of height h has nodes > 2"

IH: Claim is true for < 1 unions, prove for ith union.

Each case we saw we haven > o

Disjoint Sets - Union by Rank

OO @/@é
)

Union by Height (Rank)

Instead of using height, lets use rank.

The change: New UpTrees have rank =0

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has rank + 1
rank(A) > rank(B): The merged UpTree has rank(A)
rank(B) > rank(A): The merged UpTree has rank(B)

This is identical to height (with a different starting base)!

