Data Structures Disjoint Sets 2

CS 225 October 18, 2023
Brad Solomon & G Carl Evans

Learning Objectives

Finish disjoint set implementation

Discuss efficiency of disjoint sets

Disjoint Sets

Key Ideas:

- Each element exists in exactly one set.
- Every item in each set has the same representation
- Each set has a different representation

Implementation #2

0 1 4 2 7 3 5 6

0	1	2	3	4	5	6	7

Find(k):

Union (k_1, k_2) :

0	1	2	3

0	1	2	3

0	1	2	3

Disjoint Sets

()	1	2	3	4	5	6	7	8	9

UpTrees: Worst Case

0	1	2	3

0	1	2	3

0	1	2	3

Disjoint Sets Representation

We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

The value **-1** is our representative element (the root)

All other set members store the index to a parent of the UpTree

Disjoint Sets Find

```
1 int DisjointSets::find(int i) {
2   if ( s[i] < 0 ) { return i; }
3   else { return find( s[i] ); }
4 }</pre>
```

Running time?

What is ideal UpTree?

Find(1)

0	1	2	3	4	5	6	7	8	9
4	8			-1				4	

Disjoint Sets Union

Union(0, 4)

0	1	2	3	4	5	6	7	8	9
-1	8			-1				4	

Disjoint Sets - Union

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8	-1	10	7	-1	7	7	4	5

Disjoint Sets - Smart Union

Union by height

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Keep the height of the tree as small as possible.

Disjoint Sets - Smart Union

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Minimize the number of nodes that increase in height

Disjoint Sets - Smart Union

Union by height

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Keep the height of the tree as small as possible.

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Minimize the number of nodes that increase in height

Claim that both guarantee the height of the tree is: ______.

Disjoint Sets Find

```
Find(1)
```

```
1 int DisjointSets::find(int i) {
2   if ( s[i] < 0 ) { return i; }
3   else { return find( s[i] ); }
4 }</pre>
```

Does our metadata change anything?

0	1	2	3	4	5	6	7	8	9
4	8			-3/-4				4	

Disjoint Sets Union Example

0	1	2	3	4	5
-1	-1	-1	-1	-1	-1

0	1	2	3	4	5

0	1	2	3	4	5

Disjoint Sets Union

unionBySize(4, 3)

```
void DisjointSets::unionBySize(int root1, int root2) {
      int newSize = arr [root1] + arr [root2];
 3
     if ( arr_[root1] < arr_[root2] ) {</pre>
 4
 5
       arr [root2] = root1;
       arr [root1] = newSize;
      } else {
10
11
       arr [root1] = root2;
12
13
       arr [root2] = newSize;
14
15
16
```


0	1	2	3	4	5	6	7	8	9
4	8		-2	-4		3		4	

Claim: Sets unioned by size have a height of at most O(log₂ n)

Claim: An UpTree of height **h** has nodes \geq _____

Base Case:

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH:

 $n(B) \ge n(A)$

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

Case 1: height(A) < height(B)

 $n(B) \ge n(A)$

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

Case 2: height(A) == height(B)

 $n(B) \ge n(A)$

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

Case 3: height(A) > height(B)

Proven: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

Each case we saw we have $n \ge 2^h$.

Disjoint Sets - Union by Rank

0	1	2	3	4	5	6	7	8	9

Union by Height (Rank)

Instead of using height, lets use rank.

The change: New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has rank + 1

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

This is identical to height (with a different starting base)!