

Learning Objectives

Finish disjoint set implementation

Discuss efficiency of disjoint sets

Disjoint Sets

- Each element exists in exactly one set.
- Every item in each set has the same representation
- Each set has a different representation

Ly (aran'al elevent

Implementation #2

0	1	2	3	4	5	6	7
7	-1	7	5	2	-1	5	—)

Find(k): O(h)

Glast class: O(1)

Gray

Uptree

UpTrees

0	1	2	3

Disjoint Sets

UpTrees: Worst Case

	J37
6-3(1)	3
6-30	

0	1	2	3	
1	2	3	-/	

1365t Casp

0	1	2	3	

0	1	2	3
J	-/	1	7

Disjoint Sets Representation

We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

The value **-1** is our representative element (the root)

All other set members store the index to a parent of the UpTree

Disjoint Sets Find

```
1 int DisjointSets::find(int i) {
2   if ( s[i] < 0 ) { return i; }
3   else { return find( s[i] ); }
4 }</pre>
```

Running time? G(4)

What is ideal UpTree? heish 1 000

Disjoint Sets Union

Union(0, 4)

Disjoint Sets - Union

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8	-1	10	7	-1	7	7	4	5

Merse 7 to 4- Why? Merse Smaller height to loser height (Ik height introse!)
Merse 4 to 7 - Why? we introse the runtim for the fewest elevants

Disjoint Sets - Smart Union

Welle Average Possonial Control of the Sets of th

Union by height

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Keep the height of the tree as small as possible.

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Minimize the number of nodes that increase in height

Claim that both guarantee the height of the tree is: _

Disjoint Sets Find

Find(1)

```
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find( s[i] ); }
```


Does our metadata change anything?

Ideal tree:

0	1	2	3	4	5	6	7	8	9
4	8			-3/-4				4	

actual Storese

0	1	2	3	4	5
-1	-1	-1	-1	-1	-1

By heishi

	U	10 ⁽ 51	(25)				S 03	100
_(î) (5 0	(P)	75)	(A)	(4)	
0	,	(i)		4		Same Zailbh	المايا م	4015 4P
when	T	rnia	tuo	Ltems	OF S	Same Leigh)	

0	1	2	3	4	5
1	}	>	-	5	3

ents up same ish By Size

0	1	2	3	4	5

Disjoint Sets Union

unionBySize(4, 3)

```
void DisjointSets::unionBySize(int root1, int root2) {
      int newSize = arr [root1] + arr [root2];
 3
     if ( arr_[root1] < arr_[root2] ) {</pre>
 4
 5
       arr [root2] = root1;
       arr [root1] = newSize;
      } else {
10
11
       arr [root1] = root2;
12
13
       arr [root2] = newSize;
14
15
16
```


0	1	2	3	4	5	6	7	8	9
4	8		-2	-4		3		4	

h is allog n)

Claim: Sets unioned by size have a height of at most O(log₂ n)

Claim: An UpTree of height **h** has nodes $\geq \frac{1}{2}$

Base Case:

Claim: An UpTree of height **h** has nodes $\geq 2^h$

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

Case 1: height(A) < height(B)

New size of
$$B = \Lambda(B') \leq \Lambda(B) + \Lambda(A)$$

My hright remains $h(B)$
 $T(:v:c) P(act b/c by IH)$
 $\Lambda(B) \geq \lambda^{h(B)}$
 $\Lambda(B) \geq \lambda^{h(B)}$

 $n(B) \ge n(A)$

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

Case 2: height(A) == height(B)

 $n(B) \ge n(A)$

Claim: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

Case 3: height(A) > height(B)

Proven: An UpTree of height **h** has nodes $\geq 2^h$

IH: Claim is true for < i unions, prove for ith union.

Each case we saw we have $n \ge 2^h$.

Disjoint Sets - Union by Rank

0	1	2	3	4	5	6	7	8	9

Union by Height (Rank)

Instead of using height, lets use rank.

The change: New UpTrees have rank = 0

Let A, B be two sets being unioned. If:

rank(A) == rank(B): The merged UpTree has rank + 1

rank(A) > rank(B): The merged UpTree has rank(A)

rank(B) > rank(A): The merged UpTree has rank(B)

This is identical to height (with a different starting base)!