Data Structures

Extra Credit Project and Disjoint Sets
CS 225 October 16, 2023

Brad Solomon & G Carl Evans

UNIVERSITY OF

ILLINOIS 0 a

URBANA-CHAMPAIGN — -

Department of Computer Science

Learning Objectives / Nowemor 2

Discuss extra credit project

Finish analyziW minHeap

Introduce disjoint sets é

Big Picture: Extra credit project

Do something that is of personal interest to you!

_

Want to do undergrad research? Find a foundational algorithm!
g (ph ot whsite of £qe,) vly,,

G Gt pried ddss!
Want to go off into industry? Demonstrate knowledge with code!
|
LQ Do SQM#‘“/]) (Qd\.
Want W Use one of the suggested algorithms!

& Ve stachn of Be S War K

ECP Proposal Approved By November 1

You are ‘writing’ your own assignment skeleton
/\/L

c\,p}&."s On

cole neala))

1. Function I/O (in written proposal)
L/7 Nake o hesdw £.\c l~) Commifts 3

2. Tests (in Github repo) C
S Wt cotlech alg o

3. Datasets (in Github repo)
L7 4 dedesets of Wpernt Sszes

L? OMeu oF M< G Pt <) 2ed

ECP Proposal Approved By November 1
- —_—

You dont need to know how to implement to propose a structure!

[ERehget

L> 0&4} Sl } s gl qP{-\(owal pre et

ECP Mig-Project Check-in Meet by November 20

—_—

Meet with your mentor to confirm your algorithm works!
ﬁ

C? Com to meohag e You als oritln s Comtie

——————

ECP Final Deliverables Due December 6 @

Prove your algorithm is correct and@

1. Submit code base (GitHub repo)

2. Write a report that describes proof of correctness and efficiency

4

3. Present your work! Highlight what you did!

Proving buildHeap Running Time)

Theorem: The running time of buildHeap on array of size n is O(n)
—

Proof Strategy: i i ;J ofb) >
&p
g

1. Call heapifyDown() on every non-leaf node
2. Every node we heapifyDown() has its height as worst case work.

Summing the total heights of every node is our worst case time!
J—

Proving buildHeap Running Time

The;gﬂhuun%me of buildHeap on array of size n is O(n)
2 =

S(h) =’h+1 S R A \\‘7))
How can werelatehandn? |, - O [los «) &}%

§ : : . he loy [ﬂ) conple fr
How can we estimate running time? 9
| o (] H /
A = los) °7 7
9
b A Y P17

[]

minHea G 1. Construction =-70(") @

s

O(V)) ° & > ° 5 Insert — 0/ los /\)
ST T

|7
cc.." N
C t2=——3\ RemoveMin — Q(l°7)

he(

/
Sud Gn Offey 5’ro~>:5<

4 5 6 | 15 | 9 7
Q Te—
minHeap is a gooc example of tradeoffs: Cog of q((@$5\

[l/go‘(y OP)VMAQ\ -%(QWy ’&v\(*a\ C > *7/1/ Sb'f%})l(.Q/ /‘4”’&_
Alcesc
-(‘..4&

Heap Sort () 1. Contmdia > Oln)

Running time? Q(/\{O? ,9
e —

Sord <k o Qlhomas Woys = My 5
Udie = ﬂ“;/ S(’+

- @ Q 2z
Q/X
Key Ideas:

@ch element exists in exactly ones@

« Every item ineach set has the same representatlorj j\
e In other words: find(4) == find(8) == find(0)

e Each set has a different representation?
e In other words: find(7) !=find(4)

Disjoint Sets

Plei (CP(fo‘-'te o each et

Disjoint Sets

Doyt cofe hows
Each set is represented by @ canonical element (internally defined)

Am /) 0] ¢)
Operation: 11 ¢
find(4) == £ind(8) o (7)) = = $d (8

i”—iﬂ\/ 7 5

Disjoint Sets

The union operation combines two setsintoone set. ())ly Gt

Operation: %

i1f £find(2) '= £ind(7) {
union(find(2), f£ind(7)) ;
})

Disjoint Sets

We add new items to our‘universe’ by making new sets. 4} o te

. 7
>
ST

Operation:

makeSet (10) ;
R

\/\/\]\0./\ (>/ ’O)

Disjoint Sets ADT

Constructor

makeSet

Find

Union

Disjoint Sets A iRy L7 = ao{> et e
How might we implement a disjoint set? QO 147 /@

—

~!

-t

3T/€€ (Or eny "‘lﬁe)
(% Pitoaars!

We us Sl “H'S

<t)
gf?/ww/(how Wt Crenile
{ e
L O Male o g, dthmy
e "Bk 1 Q =T

\
A Nowvi Rk v 4

Implementation #1 Allock meay 3o kes m e
_> ﬁ;(} Statns '/(fy as X

> - 0O 1 2| 3| 4| 5 | 6
27 Y 356 XS 1 1L K31 33

|

——— (OO \% - — =
Mihegs > T -
Find(k): S CKJ & tht = my set ,CL(() \(// @
How o areiy!
\> A\\Um“f a/(oy of lesth = /‘;’;;*
1 7) N, plare ane sets L7@) oy =% 7

Union(1\, kz): Caf\(l/\.,(a\\ ((P Wl Sor D—) ol Htm (A of :\/l‘fX
Guhet &8 9, - SL\Q
& QO /) ’ S :

Implementation

2

= Song '.&eq {wjf 34"!9 (ea0nlw| eltpat

a4)

:io,i|7

N

3

4

5

G

1

2

Find(k):

G, 7
Union(k;, k>):

C oy

UpTrees

ololole

UpTrees

ololole

Disjoint Sets Representation @

We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

The value -1 is our representative element (the root)

All other set members store the index to a parent of the UpTree

k0

Disjoint Sets

5
@5@ ' @fb ®

Disjoint Sets Find

int DisjointSets::find(int i) {
if (s[i] < 0) { return i; }
else { return find(s[i]); }

}

BWN =

Running time?

What is ideal UpTree?

Disjoint Sets Union

int DisjointSets::union(int rl, int r2) {

b WN =

Disjoint Sets - Union

o \@
os

GRONOOS

(o0}

10

11

10

~N

Disjoint Sets - Smart Union

A

of \@
oo

GRONOOS

Union by height | o 1 2 3 4 5 6 7 8 9 | 10 | 11 | Idea: Keep the height of
the tree as small as
6 6 6 8 10 7 7 7 4 5 possible.

Disjoint Sets - Smart Union

A

of \@
oo

GRONOOS

Union by size 0 1 2 3 4 5 6 7 8 9 | 10 | 11 | /dea: Minimize the
number of nodes that
£ E E e O 7 7 4 > | increase in height

Disjoint Sets - Smart Union

A

of \@
oo

GRONOOS

Unionbyheight [0o 1 [23 [a[5]6] 77]s 10 | 11
6 6 6 8 10 | 7 7 4 | 5

Unionbysize [0 | 1 [2 [3[4 [5]6]7]s 10 | 11

6 6 6 8 10 | 7 7 a4 | 5

Both guarantee the height of the tree is:

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

