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Learning Objectives / Nowemor 2

Discuss extra credit project

Finish analyziW minHeap

Introduce disjoint sets é




Big Picture: Extra credit project

Do something that is of personal interest to you!

_

Want to do undergrad research? Find a foundational algorithm!
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Want to go off into industry? Demonstrate knowledge with code!
|
LQ Do SQM#‘“/]) (Qd\.
Want W Use one of the suggested algorithms!
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ECP Proposal Approved By November 1

You are ‘writing’ your own assignment skeleton
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1. Function I/O (in written proposal)
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2. Tests (in Github repo) C
S Wt cotlech alg o

3. Datasets (in Github repo)
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ECP Proposal Approved By November 1
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You dont need to know how to implement to propose a structure!
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ECP Mig-Project Check-in Meet by November 20
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Meet with your mentor to confirm your algorithm works!
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ECP Final Deliverables Due December 6 @

Prove your algorithm is correct and@

1. Submit code base (GitHub repo)

2. Write a report that describes proof of correctness and efficiency
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3. Present your work! Highlight what you did!




Proving buildHeap Running Time )

Theorem: The running time of buildHeap on array of size n is O(n)
—

Proof Strategy: i i ;J ofb) >
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1. Call heapifyDown() on every non-leaf node
2. Every node we heapifyDown() has its height as worst case work.

Summing the total heights of every node is our worst case time!
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Proving buildHeap Running Time

The;gﬂhuun%me of buildHeap on array of size n is O(n)
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minHea G 1. Construction =-70(") @

s

O(V)) ° & > ° 5 Insert — 0/ los /\)
ST T

|7
cc.." N
C t2=——3\ RemoveMin — Q(l°7 )

he(

/
Sud Gn Offey 5’ro~>:5<

4 5 6 | 15 | 9 7
Q Te—
minHeap is a gooc example of tradeoffs: Cog of q((@$5\

[l/go‘( y OP)VMAQ\ -%( QWy ’&v\(*a\ C > *7/1/ Sb'f%})l( .Q/ /‘4”’&_
Alcesc
-(‘..4&




Heap Sort () 1. Contmdia > Oln)
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Key Ideas:

@ch element exists in exactly ones@

« Every item ineach set has the same representatlorj j\
e In other words: find(4) == find(8) == find(0)

e Each set has a different representation?
e In other words: find(7) !=find(4)

Disjoint Sets
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Disjoint Sets

Doyt cofe hows
Each set is represented by @ canonical element (internally defined)
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Disjoint Sets

The union operation combines two setsintoone set.  ())ly Gt

Operation: %

i1f £find(2) '= £ind(7) {
union( find(2), f£ind(7) ) ;
} )




Disjoint Sets

We add new items to our‘universe’ by making new sets. 4} o te

. 7
>
ST

Operation:

makeSet (10) ;
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Disjoint Sets ADT

Constructor

makeSet

Find

Union




Disjoint Sets A iRy L7 = ao{> et e
How might we implement a disjoint set? QO 147 /@
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Implementation #1 Allock meay 3o kes m e
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Implementation
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UpTrees
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UpTrees
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Disjoint Sets Representation @

We can represent a disjoint set as an array where the key is the index

The values inside the array stores our sets as a pseudo-tree (UpTree)

The value -1 is our representative element (the root)

All other set members store the index to a parent of the UpTree
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Disjoint Sets
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Disjoint Sets Find

int DisjointSets::find(int i) {
if ( s[i] < 0 ) { return i; }
else { return find( s[i] ); }

}
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Running time?

What is ideal UpTree?




Disjoint Sets Union

int DisjointSets::union(int rl, int r2) {
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Disjoint Sets - Union
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Disjoint Sets - Smart Union

A

of \@
oo

GRONOOS

Union by height | o 1 2 3 4 5 6 7 8 9 | 10 | 11 | Idea: Keep the height of
the tree as small as
6 6 6 8 10 7 7 7 4 5 possible.




Disjoint Sets - Smart Union

A

of \@
oo

GRONOOS

Union by size 0 1 2 3 4 5 6 7 8 9 | 10 | 11 | /dea: Minimize the
number of nodes that
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Disjoint Sets - Smart Union
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Unionbyheight [ 0o 1 [ 23 [a[5]6 ] 77]s 10 | 11
6 6 6 8 10 | 7 7 4 | 5

Unionbysize [ 0 | 1 [ 2 [ 3[4 [5]6]7]s 10 | 11

6 6 6 8 10 | 7 7 a4 | 5

Both guarantee the height of the tree is:

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height



