
Department of Computer Science

Data Structures
BTree Analysis (and Heaps)

October 9, 2023
CS 225

Brad Solomon & G Carl Evans

Exam 3 (10/16 — 10/18)
Sign up now on Prairietest!

Cumulative content through end of BTrees (today)

Coding question based on trees (know your tree labs!)

Learning Objectives
Analyze the performance of the BTree

Introduce a specialized data structure (discuss tradeoffs)

BTree Properties
A BTrees of order m is an m-ary tree and by definition:

- All keys within a node are ordered

- All nodes contain no more than m-1 keys.

- All internal nodes have exactly one more child than keys

All leaves in the tree are at the same level.

Root nodes can be a leaf or have [2, m] children.

All non-root, internal nodes have [ceil(m/2), m] children.

BTree Analysis

-3

8

23

25 31

34

36

37

-11 39

42

40

50

5348

Let n be the number of keys in a BTree of order m.

What is our best approximation for the runtime for find? For insert?

BTree Analysis
Like the BST, BTree height determines the runtime of our operations!

Claim: The BTree structure limits our height to O(logm(n))

Proof: We want to find a relationship for BTrees between the
number of keys (n) and the height (h).

BTree Analysis
Strategy:

We will first count the number of nodes, level by level. 
 
Then, we will add the minimum number of keys per node (n).

 
The minimum number of nodes will tell us the largest possible
height (h), allowing us to find an upper-bound on height.

Root nodes can be a leaf or have [2, m] children.

All non-root, internal nodes have [ceil(m/2), m] children.

Key Facts:

BTree Analysis
Minimum number of nodes for a BTree of order m at each level:

Root:

Level 1:

Level 2:

Level 3:

Level h:

BTree Analysis
The total number of nodes is the sum of all the levels:

1 + 2
h−1

∑
k=0

tk
n−1

∑
i=0

xi =
xn − 1
x − 1

t = ⌈
m
2

⌉

BTree Analysis
The total number of nodes: 1 + 2

th − 1
t − 1

The total number of keys:

t = ⌈
m
2

⌉

BTree Analysis
The smallest total number of keys is:

So an inequality about n, the total number of keys:

Solving for h, since h is the max number of seek operations:

2th − 1

t = ⌈
m
2

⌉

BTree Analysis
Given m=101, a tree of height h=4 has:

Minimum Keys:

Maximum Keys:

BTree
The BTree is still used heavily today!

Improvements such as B+Tree and B*Tree exist far outside class scope

-3

8

23

25 31

42

43

55

-11 60

Answer to in-class question:

Pushing up values in a BTree is recursive.

See insert lecture for more details

Thinking conceptually: Sorting a queue
How might we build a ‘queue’ in which our front element is the min?

Priority Queue Implementation
insert removeMin

O(n)* O(n)

O(1) O(n)

O(n) O(1)

O(n) O(1)

unsorted

sorted

sorted

unsorted

Priority Queue Implementation
insert removeMin

5

3 6

4

2

8

10

9 12

111 7

Thinking conceptually: A tree without pointers
What class of (non-trivial) trees can we describe without pointers?

Another possibly structure…

5

15 9

25

4

6

7 20

1116 1214

(min)Heap

5

15 9

25

4

6

7 20

1116 1214

A complete binary tree T is a
min-heap if:

• T = {} or

• T = {r, TL, TR}, where r is less
than the roots of {TL, TR}
and {TL, TR} are min-heaps.

