Data Structures BTree Analysis (and Heaps)

CS 225 Brad Solomon & G Carl Evans October 9, 2023

Exam 3 (10/16 — 10/18)

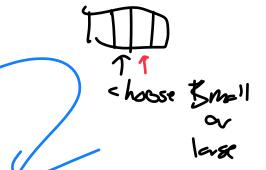
Sign up now on Prairietest!

GPractice exam is 4P

Cumulative content through end of BTrees (today)

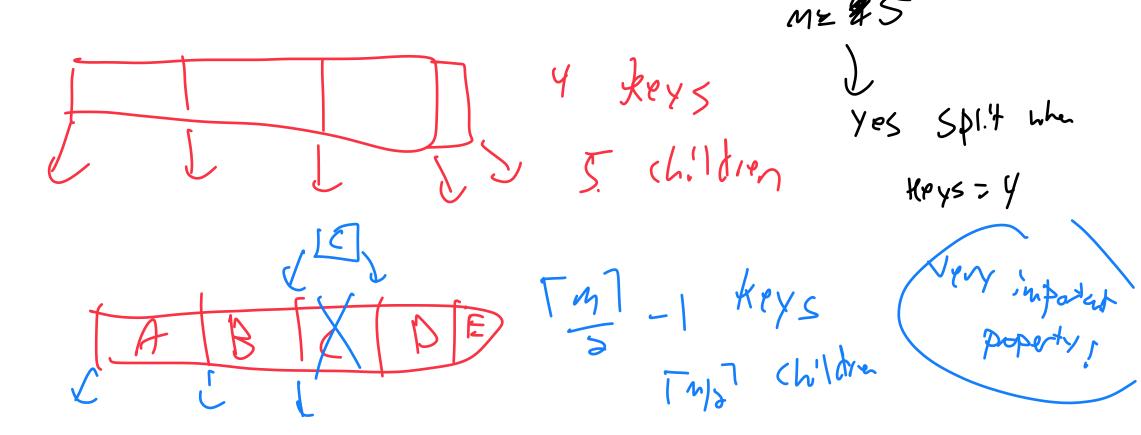
Coding question based on trees (know your tree labs!)

Learning Objectives



Analyze the performance of the BTree

Introduce a specialized data structure (discuss tradeoffs)



BTree Properties Minimize Seek operations

A BTrees of order m is an m-ary tree and by definition:

- All keys within a node are ordered
 All nodes contain no more than m-1 keys.
- All internal nodes have exactly one more child than keys

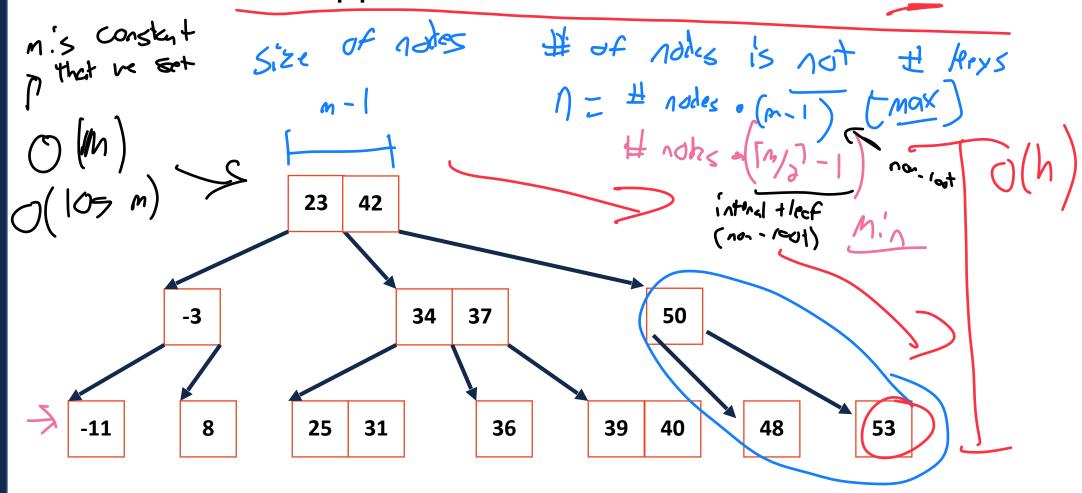
Root nodes can be a leaf or have [2, m] children.

All non-root, internal nodes have [ceil(m/2), m] children.

All leaves in the tree are at the same level.

Let **n** be the number of keys in a BTree of order **m**.

What is our best approximation for the runtime for find? For insert?



Like the BST, BTree height determines the runtime of our operations!

Claim: The BTree structure limits our height to $O(log_m(n))$

Proof: We want to find a relationship for BTrees between the number of keys (n) and the height (h).

h given nodes
is hard
is hard

notes hom multiple keys

Strategy:

We will first count the number of nodes, level by level.

Then, we will add the minimum number of keys per node (n).

Key Facts:

Root nodes can be a leaf or have [2, m] children.

All non-root, internal nodes have [ceil(m/2), m] children.

t = [m] (H of children for all internal notes)

Minimum number of **nodes** for a BTree of order m **at each level:**

$$\int -t = \lceil \frac{m}{2} \rceil$$

The **total number of nodes** is the sum of all the levels:

$$1 + 2\sum_{k=0}^{h-1} t^k = 1 + 2\left(\frac{t^{h-1}}{t-1}\right)$$

$$\sum_{i=0}^{n-1} x^i = \frac{x^n - 1}{x - 1}$$

The **total number of nodes**:

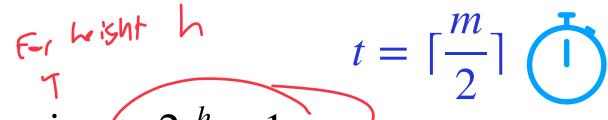
$$t = \lceil \frac{m}{2} \rceil$$

$$1 + 2 \frac{t^h - 1}{t^h - 1}$$

The total number of keys:

root has how many key?! []
internal notes:
$$\Gamma^{m/3} - I = t - 1$$
leaf notes: $\Gamma^{m/3} - 1 = t - 1$

$$1+2\left(\frac{\epsilon'-1}{\epsilon-1}\right). \ \ \epsilon-1$$



The **smallest total number of keys** is:

So an inequality about **n**, the total number of keys:

$$|09|$$
 $|19|$ $|04|$ $|19|$

Solving for **h**, since **h** is the max number of seek operations:

Given **m=101**, a tree of height **h=4** has:

Minimum Keys:
$$2E^{h}-1 = 2\sqrt{n}$$
 $3\cdot 5\sqrt{1}-1 = 2\sqrt{5}$

Minimum Keys: $2E^{h}-1 = 2\sqrt{5}$
 $3\cdot 5\sqrt{1}-1 = 2\sqrt{5}$

Minimum Keys: $2E^{h}-1 = 2\sqrt{$

Maximum Keys: Same losic but
$$t = m$$

$$t (cot is not 1 Key but my keys)$$

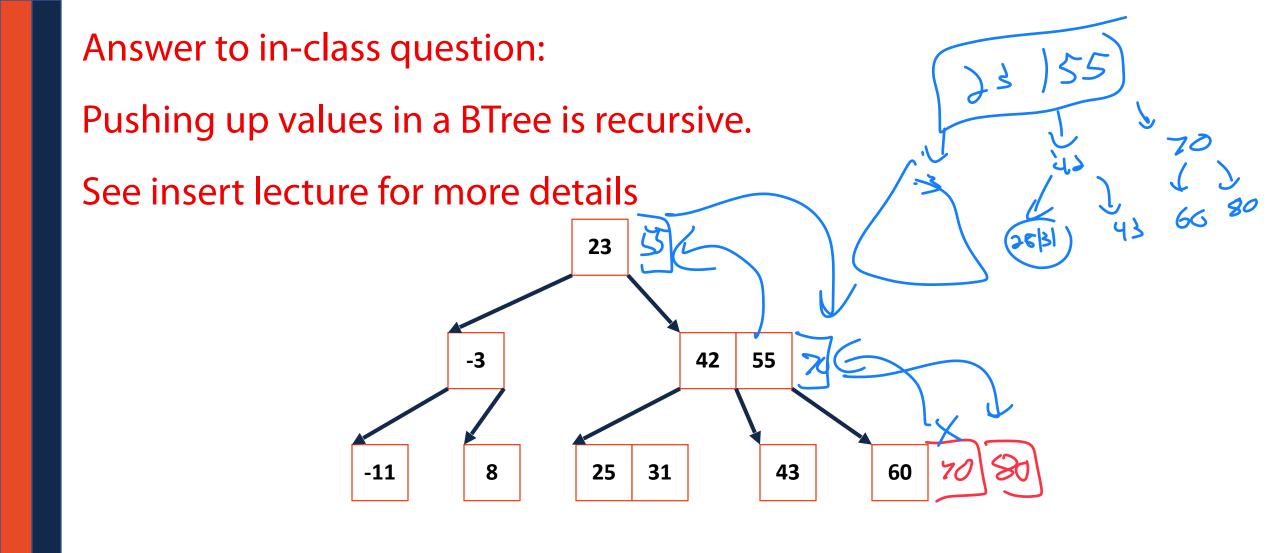
med min us max hey

BTree

The BTree is still used heavily today!

Improvements such as B+Tree and B*Tree exist far outside class scope

Ly Not be a final project!



Thinking conceptually: Sorting a queue

How might we build a 'queue' in which our front element is the min?

Priority Queue Implementation

insert	removeMin	
O(n)*	O(n)	Sup Prephie unsorted
0(1)	O(n)	unsorted
O(n)	0(1)	sorted smilkst
O(n)	O(1)	sorted

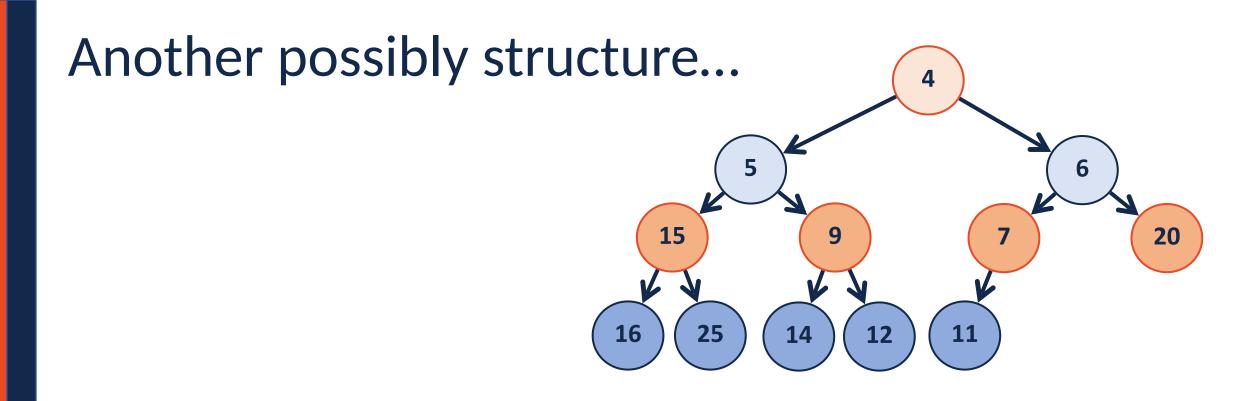
Priority Queue Implementation

Insert removeMin

	insert	removeMin	
	0(1041)	0/6	71)
1)	tier size	in sterage	
I	say this c	Abj(c+ is a	a gni unly

Thinking conceptually: A tree without pointers

What class of (non-trivial) trees can we describe without pointers?



(min)Heap

A complete binary tree T is a min-heap if:

- T = {} or
- $T = \{r, T_L, T_R\}$, where r is less than the roots of $\{T_L, T_R\}$ and $\{T_L, T_R\}$ are min-heaps.

